The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Publications Copernicus
Download
Citation
Articles | Volume XLI-B5
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B5, 553–556, 2016
https://doi.org/10.5194/isprs-archives-XLI-B5-553-2016
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B5, 553–556, 2016
https://doi.org/10.5194/isprs-archives-XLI-B5-553-2016

  15 Jun 2016

15 Jun 2016

DETECTION OF SLOPE MOVEMENT BY COMPARING POINT CLOUDS CREATED BY SFM SOFTWARE

Kazuo Oda, Satoko Hattori, and Toko Takayama Kazuo Oda et al.
  • Asia Air Survey Co., Ltd.

Keywords: Structure from Motion, ICP, point cloud, PCA, Slope Monitoring

Abstract. This paper proposes movement detection method between point clouds created by SFM software, without setting any onsite georeferenced points. SfM software, like Smart3DCaputure, PhotoScan, and Pix4D, are convenient for non-professional operator of photogrammetry, because these systems require simply specification of sequence of photos and output point clouds with colour index which corresponds to the colour of original image pixel where the point is projected. SfM software can execute aerial triangulation and create dense point clouds fully automatically. This is useful when monitoring motion of unstable slopes, or loos rocks in slopes along roads or railroads. Most of existing method, however, uses mesh-based DSM for comparing point clouds before/after movement and it cannot be applied in such cases that part of slopes forms overhangs. And in some cases movement is smaller than precision of ground control points and registering two point clouds with GCP is not appropriate. Change detection method in this paper adopts CCICP (Classification and Combined ICP) algorithm for registering point clouds before / after movement. The CCICP algorithm is a type of ICP (Iterative Closest Points) which minimizes point-to-plane, and point-to-point distances, simultaneously, and also reject incorrect correspondences based on point classification by PCA (Principle Component Analysis). Precision test shows that CCICP method can register two point clouds up to the 1 pixel size order in original images. Ground control points set in site are useful for initial setting of two point clouds. If there are no GCPs in site of slopes, initial setting is achieved by measuring feature points as ground control points in the point clouds before movement, and creating point clouds after movement with these ground control points. When the motion is rigid transformation, in case that a loose Rock is moving in slope, motion including rotation can be analysed by executing CCICP for a loose rock and background slope independently.