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ABSTRACT: 

 

The automation of unmanned vehicle operation has gained a lot of research attention, in the last few years, because of its numerous 

applications. The vehicle localization is more challenging in indoor environments where absolute positioning measurements (e.g. 

GPS) are typically unavailable. Laser range finders are among the most widely used sensors that help the unmanned vehicles to 

localize themselves in indoor environments.  Typically, automatic real-time matching of the successive scans is performed either 

explicitly or implicitly by any localization approach that utilizes laser range finders. Many accustomed approaches such as Iterative 

Closest Point (ICP), Iterative Matching Range Point (IMRP), Iterative Dual Correspondence (IDC), and Polar Scan Matching (PSM) 

handles the scan matching problem in an iterative fashion which significantly affects the time consumption. Furthermore, the 

solution convergence is not guaranteed especially in cases of sharp maneuvers or fast movement. This paper proposes an automated 

real-time scan matching algorithm where the matching process is initialized using the detected corners. This initialization step aims 

to increase the convergence probability and to limit the number of iterations needed to reach convergence. The corner detection is 

preceded by line extraction from the laser scans. To evaluate the probability of line availability in indoor environments, various data 

sets, offered by different research groups, have been tested and the mean numbers of extracted lines per scan for these data sets are 

ranging from 4.10 to 8.86 lines of more than 7 points. The set of all intersections between extracted lines are detected as corners 

regardless of the physical intersection of these line segments in the scan. To account for the uncertainties of the detected corners, the 

covariance of the corners is estimated using the extracted lines variances. The detected corners are used to estimate the 

transformation parameters between the successive scan using least squares. These estimated transformation parameters are used to 

calculate an adjusted initialization for scan matching process. The presented method can be employed solely to match the successive 

scans and also can be used to aid other accustomed iterative methods to achieve more effective and faster converge. The performance 

and time consumption of the proposed approach is compared with ICP algorithm alone without initialization in different scenarios 

such as static period, fast straight movement, and sharp manoeuvers. 

 

 

1. INTRODUCTION 

The capability to take decisions without human intervention is 

called autonomy (Haibin, 2014). Thus, to autonomously 

navigate a robot or unmanned vehicle in an indoor 

environment, this requires an accurate estimation of the 

vehicle’s navigation parameters (i.e. position, velocity and 

orientation). Vehicle localization can be a challenging task 

because GPS can fail to provide reliable position because of 

multipath problem, loss of line of sight and/or signal 

attenuation (Wang, 2014). Even if the GPS signal is received 

by any other means, the accuracy of the received measurements 

will not be appropriate for indoor navigation. Indoor 

localization approaches assume either known or unknown 

environment (Kai, 2003). The complexity of the localization 

problem is increased for completely unknown environment due 

to the absence of the environment representation.  

Simultaneous localization and mapping (SLAM) is one of the 

basic techniques in addressing this problem (Machado, 2013). 

SLAM is based on constructing a map of the surrounding 

environment whilst at the same time estimating the vehicle’s 

position inside this environment. Mapping the unknown 

environment is a problem of interpreting the information 

gathered from the sensor(s) of the moving vehicle into a given 

representation. Therefore, the main concern is how to interpret 

the sensor(s) data and how to represent the current environment 

as well. Consequently, this can be described by the following 

question “What does the surrounding environment look like?”. 

Scan matching is a key step in a lot of SLAM approaches. 

Typically, the relative parameters of the vehicle are estimated 

from the matching of the successive scans (Shu, 2013). 

Furthermore, constructing the map is performed from the scan 

matching as well. Many accustomed approaches have been 

proposed to perform the scan matching between the successive 

scans such as Iterative Closest Point (ICP) (Besl and McKay, 

1992), Iterative Matching Range Point (IMRP) (Feng and 

Milios, 1994), Iterative Dual Correspondence (IDC) (Feng and 

Milios, 1994), and Polar Scan Matching (PSM) (Diosi and 

Kleeman, 2005). The first three algorithms are working in 

Cartesian coordinate system, whereas the PSM is using polar 

coordinate system. The fundamental difference between these 

algorithms is the method of finding the correspondences 

between the successive scan frames. The ICP algorithm assigns 

correspondences between points based on the shortest 

Euclidean distance. IMPR selects the correspondence with the 

same range as the reference point and within a defined region 

of the model near the reference point. IDC merges ICP and 

IMRP algorithms, it uses the ICP to compute the translation, 

and then, the rotation is calculated from the IMRP algorithm. 

PSM depends on the matching bearing rule by projecting and 

comparing the range of the point cloud according to each 

bearing angle (Fredy, 2007). 
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Iteration is a common aspect in all these algorithms because of 

nonlinearity of the model. Thus, they are relatively time 

consuming. Furthermore, the solution convergence is not 

guaranteed especially at the cases of sharp rotation or fast 

movement, which motivates the use of other aiding sensor such 

as odometer, IMU into the matching process.  

This paper proposes an automated real-time scan matching 

algorithm where the matching process is initialized using the 

detected corners. This initialization step aims to increase the 

convergence probability and to limit the number of iterations 

needed for convergence. The corner detection is preceded by 

line extraction from the laser scans. The presented method can 

be employed solely to match the successive scans and also can 

be used to aid other accustomed iterative methods to achieve 

more effective and faster converge. The proposed algorithm 

utilizes a sole 2D 360° laser scan range finder for data 

collection. 

This paper is organized as follows: Section 2 describes the 

overview of the proposed algorithm structure. The used 

methodology is explained in two phases, where Section 3 

illustrates the first phase for linear matching, while the second 

phase, which is the corner registration, is demonstrated in 

Section 4. The experimental results are presented and discussed 

in Section 5, and finally the conclusion is given in Section 6. 

2. OVERVIEW OF THE PROPOSED ALGORITHM 

STRUCTURE 

 

Figure 1. Overall structure of the proposed algorithm 

Figure 1 shows the overall structure of the proposed algorithm. 

For every two successive scans, the proposed algorithm starts 

by extracting the lines from the reference and current point 

clouds. The extracted lines are matched after accepting mutual 

compatibility with the previous scan lines. The set of all 

intersections between extracted lines are detected as corners 

regardless of the physical intersection of these line segments 

from the scan. The detected corners are used to estimate the 

transformation parameters between the successive scan using 

least squares. These estimated transformation parameters are 

used to calculate an adjusted initialization for scan matching 

process of the current scan point cloud. Finally, an iterative 

scan matching algorithm such as ICP is conducted between the 

adjusted current frame and the reference frame. 

3. PHASE I: LINE MATCHING 

3.1 Line Extraction 

The used laser scanner range finder is RPLIDAR 360°. 

Usually, the raw measurements of the laser scanner are 2D 

point cloud data represented as polar coordinates (𝑟𝑙 , 𝜃𝑙) in the 

laser scanner coordinate local frame (l-frame). Hence, the raw 

measurements of the laser scanner are converted to the 

Cartesian coordinates (𝑥𝑙 , 𝑦𝑙). 

Figure 2 shows the extracted lines of a point cloud data for one 

scan using the line tracking algorithm in the laser scanner l-

frame. The line numbers represent their order in the scan, 

whilst the red asterisk shows the laser scanner position. 

 

Figure 2. Point cloud data and its extracted lines using line 

tracking algorithm for one scan in the l-frame 

 

The line tracking (LT) algorithm is applied to cluster the point 

cloud into groups (Leonardo, 2013). The line that fits each 

group is estimated using principle component analysis (PCA). 

By calculating the eigenvectors and eigenvalues of the 

covariance matrices of the point’s coordinates of each group in 

the data set, the eigenvector with the highest eigenvalue 

represents the principle direction of the group. While the 

second eigenvector represents the robustness of each line. The 

extracted lines of a small number of points less than a threshold 

(seven points) is excluded. 

To evaluate the probability of line availability in indoor 

environments, various data sets, offered by different research 

groups, have been tested and the mean number of extracted 

lines per scan for these data sets is ranging from 4.10 to 8.86 

lines of more than seven points. Figure 3 shows the tested data 

sets which include the MIT Killian Court, MIT CSAIL 

Building, Intel Research Lab Seattle, ACES Building at the 

University of Texas, and building 079 University of Freiburg 

respectively (Burgard, 2009). 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B5, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B5-533-2016

 
534



 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 3. Maps for different data sets are used. (a) MIT Killian 

Court (b) MIT CSAIL Building (c) Inteal Research Lab Seattle 

(d) ACES Building at the University of Texas (e) building 079 

University of Freiburg 

 

Figure 4 shows a histogram for the extracted lines count in the 

entire data set of the building 079 University of Freiburg.  

 
Figure 4. Histogram of number of lines detected in the building 

079 University of Freiburg data set 

 

Figure 5 shows the total number of lines per scan, which is 

represented by the blue line, for the building 079 University of 

Freiburg data set. Further, the red dotted line presents the mean 

lines count. 

 

 
Figure 5. Number of lines per scan in the building 079 

University of Freiburg data set 

 

Figure 6 demonstrates the execution time of the lines extraction 

per scan in the building 079 University of Freiburg data set. 

 

 
Figure 6. Execution time of the lines extraction in the building 

079 University of Freiburg data set 

 

Table 1 lists the line availability and extraction time for 

different data sets. All the extracted lines are composed of more 

than seven points. 

 
Data set 

Name 

MIT 

Killian 

MIT 

CSAIL 

Intel 

Lab 

ACES 

Building 

Freiburg 

Building 

Number of 

Scans 
17481 1989 13632 7375 4496 

Mean 

number of 
lines 

4.24 8.80 4.10 4.21 8.86 

Percentage 

of less 
than three 

lines 

11.75 0.10 18.64 15.18 0.13 

Mean 

Execution 

Time [ms] 

3.71 8.93 3.45 4.03 7.41 

 

Table 1. Line availability and extraction time for different data 

sets 

 

3.2 Line Matching 

The extracted lines in the current scan frame should be matched 

with the reference scan frame lines to enable the matching of 

the corners. Thence, the angle differences between all lines of 

the current scan frame are computed with all reference lines 

using the vector dot product. The matching candidate lines are 

chosen, from the current scan with respect to the reference 

scan, according to an angle threshold. Furthermore, the 
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orthogonal distance to each line is calculated from the laser 

scanner, which is the origin of the l-frame, and the intersection 

points between the orthogonal lines with all lines are computed 

as well. Thus, from the matched candidate lines, the line with 

the smallest difference of the orthogonal distance and the 

smallest Euclidean distance of the intersection points is selected 

to be the matched line in the current scan. Otherwise, there is 

no matching. 

 

Figure 7. Two successive scans presenting the reference and 

current scans 
 

Figure 7 demonstrates the matched lines, having same colour, 

in two successive scans. Each line is represented by an index 

number. The red asterisk shows the position of the laser scanner 

in the l-frame, while the black asterisks present the intersection 

points between the orthogonal lines from the laser scanner and 

each line in the scan frame.    

 

3.3 Corners Calculation 

Thereafter, the set of all intersections between matched lines 

are detected as corners unrelatedly of the physical intersection 

of these line segments in the scan. To account for the 

uncertainties of the detected corners, the covariance of the 

corners (𝐶𝑐) is estimated using the extracted lines variances. 

For each matched line, two boundary (deviation) lines are built 

around the matched line using the second eigenvalue which 

represents the precision of the line. The confidence region, for 

each corner, is computed from the intersections of these 

boundary lines.  

Figure 8 depicts the confidence ellipse region. The green 

dashed lines present the boundary lines; it is scaled twenty five 

times. The red ellipses are the confidence regions. 

Subsequently, the covariance matrices are employed in the least 

squares registration step. 

 

 
 

Figure 8. Confidence ellipse region 
 

4. PHASE II: CORNERS REGISTERATION 

The detected corners and their covariance matrices, from phase 

one, are used to estimate the transformation parameters 

between the successive scan using weighted least squares. 

These estimated transformation parameters are used to calculate 

an adjusted initialization for scan matching process. Matching 

corners is more consistent correspondence scheme that might 

lead to a better solution/convergence. 

The successive corners relation can be expressed as given: 

 

(𝑇)3𝑥3 ∗ (𝑃𝑐)3𝑥2𝑛 = (𝑃𝑝)3𝑥2𝑛 (1) 

cos(α) 𝑥𝑐𝑖 + sin(α) 𝑦𝑐𝑖 + 𝑥𝑡𝑟𝑎𝑛𝑠 = 𝑥𝑝𝑖 (2) 

− sin(α) 𝑥𝑐𝑖 + cos(α) 𝑦𝑐𝑖 + 𝑦𝑡𝑟𝑎𝑛𝑠 = 𝑥𝑝𝑖 (3) 

where   T = transformation matrix 

            P𝑐 = corners points from the current scan frame 

            Pp = corners points from the previous scan frame 

            n = number of the points  
            α = rotation angle 

            x𝑡𝑟𝑎𝑛𝑠 = translation change in the x direction 

            y𝑡𝑟𝑎𝑛𝑠 = translation change in the y direction 

Equation (1) is adjusted in order to minimize the weighted sum 

of the squares of the residual, and (W) is the point’s weight 

matrix, which is represented as given: 

 

(𝑊)2𝑛𝑥2𝑛 ∗ (𝑃𝑐)2𝑛𝑥4 ∗ (𝑥)4𝑥1 = (𝑊)2𝑛𝑥2𝑛 ∗ (𝑃𝑝)2𝑛𝑥1 (4) 

(𝑥)4𝑥1 = [

cos 𝛼
sin 𝛼

𝑥𝑡𝑟𝑎𝑛𝑠

𝑦𝑡𝑟𝑎𝑛𝑠

] (5) 

(𝑃𝑐)2𝑛𝑥4 = [

𝑃𝑐1𝑥 𝑃𝑐1𝑦 1 0

𝑃𝑐1𝑦 −𝑃𝑐1𝑥 0 1

⋮ ⋮ ⋮ ⋮

] (6) 

(𝑃𝑝)2𝑛𝑥1 = [

𝑃𝑝1𝑥

𝑃𝑝1𝑦

⋮

] (7) 

𝑊 = 𝐶𝑐
−1 (8) 

C = (Pc)4x2n
T ∗ (W)2nx2n ∗ (Pc)2nx4 (9) 

F = (Pc)4x2n
T ∗ (W)2nx2n ∗ (Pp)2nx1 (10) 

C ∗ (x)4x1 = F (11) 

(x)4x1 = (C)−1 ∗ F (12) 

where   x = state estimate victor 

            P𝑐𝑖𝑥 = current 𝑖𝑡ℎcorner point in the x direction  
            P𝑐𝑖𝑦 = current 𝑖𝑡ℎcorner point in the y direction  

            P𝑝𝑖𝑥 = previous 𝑖𝑡ℎcorner point in the x direction   

            P𝑝𝑖𝑦 = previous 𝑖𝑡ℎcorner point in the y direction 

            W = weight matrix 

            C𝑐 = covariance matrix of the corners 

Ultimately, the homogeneous transformation matrix is 

computed from the weighted least square using corners 

registration (Aghamohammadi, 2007). 
 

𝑇 = [
cos 𝛼 sin 𝛼 𝑥𝑡𝑟𝑎𝑛𝑠

− sin 𝛼 cos 𝛼 𝑦𝑡𝑟𝑎𝑛𝑠

0 0 1
] (13) 

After approaching the adjusted current scan point cloud to the 

reference one, iterative algorithm for example ICP is utilized as 

a fine tuning step for the scan matching process. 

 

Reference Scan Current Scan 
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5. EXPERIMENTAL RESULTS 

The registration performance and time consumption of the 

proposed approach are compared with using the ICP algorithm 

alone without initialization in different scenarios such as static 

period, fast straight movement, and sharp manoeuvers.  

The next figures present the three different scenarios. Figure 9 

shows the scan matching results between two successive scans 

during a static period using the ICP and the proposed algorithm. 

The matching RMSEs between the matched points in the ICP 

and the proposed algorithm for the three scenarios are presented 

in Table 2.  

The two algorithms have approximately the same registration 

performance during the static period because the probability of 

correct selection of the correspondences in the reference frame 

is approximately the same.  Nevertheless, the proposed 

approach is slightly better than ICP. 

 
 

Figure 9. Scan matching results during the static scenario from 

ICP and the proposed algorithm 
 

Figure 10 demonstrates the scan matching error in the previous 

figure. Furthermore, the one sigma ellipse is representing the 

matching error in the x and y directions. 
 

 
 

Figure 10. One sigma ellipse representing the scan matching 

error during the static scenario 

 

Figure 11 to Figure 14 illustrate the other two scenarios. 

Obviously, the ICP algorithm fails to converge due to the bad 

data association process, thus it could not coincide with the two 

successive scan frames accurately. On the other hand, the 

proposed algorithm succeeds to assign good correspondences 

because of matching corners is more reliable than using the 

entire point cloud. Thus, the two consecutive scan frames are 

almost corresponded as shown in Figure 11 and Figure 13. 

 

 
 

Figure 11. Scan matching results during fast straight movement 

scenario 
 

 
 

Figure 12. Scan matching error during the fast straight 

movement scenario 
 

 
 

Figure 13. Scan matching results during rotation scenario 
 

 
 

Figure 14. Scan matching error during the rotation scenario 
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From Table 2, it is clear that the proposed algorithm aids the 

ICP to converge especially during the fast movement and sharp 

rotation. 

  

 Matching RMSE [cm] 

Algorithm Static Straight Rotation 

Proposed 2.6209 1.7879 2.6219 

ICP 2.6542 6.5976 12.426 
 

Table 2. Matching RMSE comparison between the proposed 

algorithm and ICP 
 

Figure 15 depicts the matching RMSEs for every scan in the 

data set and the mean is 5.85 and 9.64 cm for the proposed 

algorithm and ICP respectively. 

 

 
Figure 15. The mapping RMSE for each scan in the data set 

 

Table 3 shows that the proposed algorithm decreases the 

number of iteration of the ICP algorithm. Moreover, it reduces 

the time consumption as well. 

 

 Mean 

Algorithm Number of iterations Time consumption [s] 

Proposed 10.0663 0.0264 

ICP 14.9669 0.0325 
 

Table 3. Number of iterations and time consumption for the 

proposed and ICP algorithms 

 

Figure 16 to Figure 18 depict the matching convergence during 

the three scenarios. It is clear that the proposed algorithm aided 

the ICP algorithm through several aspects. Firstly, the proposed 

algorithm starts in a good matching level in the three scenarios. 

Secondly, the matching convergence level is better during the 

fast straight movement and sharp rotation. Thirdly, the 

convergence time is faster in all scenarios even in the static one.  

 

 
Figure 16. Matching convergence in one scan during the static 

period 

 

 
Figure 17. Matching convergence in one scan during the fast 

straight movement period 

 

 
Figure 18. Matching convergence in one scan during the 

rotation period 

 

6. CONCLUSION 

In this paper, an automated real-time scan matching algorithm 

is proposed, where the matching process is initialized using 

detected corners. This initialization step aims to increase the 

convergence probability and to limit the number of iterations 

needed for absolute convergence. The proposed algorithm can 

be employed solely to match the successive scans and also can 

be used to aid other accustomed iterative methods to achieve 

more effective and faster converge. The performance and time 

consumption of the proposed approach is compared with ICP 

algorithm in different scenarios such as static period, fast 

straight movement, and sharp manoeuvers. The RMS value of 

the neighbour points distance between scans after scan 

matching of the proposed algorithm in the three scenarios are 

2.62, 1.78, and 2.62 cm respectively. On the other hand, the 

ICP achieves 2.65, 6.59, and 12.42 cm respectively. 

Furthermore, the number of iterations needed for convergence, 

comparing with using the ICP algorithm alone, is reduced by 

32.7% and the consumption time is reduced by 18.7% as well. 

The performance of the ICP algorithm is improved when it is 

used with the proposed algorithm rather than when it is used 

alone, especially during the harsh conditions such as fast 

movements and sharp rotations. 

These results indicate the significance of the proposed approach 

for scan matching through improving matching accuracy and 

optimizing the processing time, which qualify the approach for 

real time system implementations. 
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