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ABSTRACT: 

 

The periodic inspection of certain infrastructure features plays a key role for road network safety and preservation, and for developing 

optimal maintenance planning that minimize the life-cycle cost of the inspected features. Mobile Mapping Systems (MMS) use laser 

scanner technology in order to collect dense and precise three-dimensional point clouds that gather both geometric and radiometric 

information of the road network. Furthermore, time-stamped RGB imagery that is synchronized with the MMS trajectory is also 

available. In this paper a methodology for the automatic detection and classification of road signs from point cloud and imagery data 

provided by a LYNX Mobile Mapper System is presented. First, road signs are detected in the point cloud. Subsequently, the inventory 

is enriched with geometrical and contextual data such as orientation or distance to the trajectory. Finally, semantic content is given to 

the detected road signs. As point cloud resolution is insufficient, RGB imagery is used projecting the 3D points in the corresponding 

images and analysing the RGB data within the bounding box defined by the projected points. The methodology was tested in urban 

and road environments in Spain, obtaining global recall results greater than 95%, and F-score greater than 90%. In this way, inventory 

data is obtained in a fast, reliable manner, and it can be applied to improve the maintenance planning of the road network, or to feed a 

Spatial Information System (SIS), thus, road sign information can be available to be used in a Smart City context.  

 

 

1. INTRODUCTION 

Traffic signs are one of the most common visual aids in road 

networks. They provide useful information (warnings, 

prohibitions, etc.) to the road users, and contribute actively to the 

safety of the traffic environments (Koyuncu and Amado, 2008). 

The quality of a traffic sign is influenced by several factors 

(ageing, different forms of damage, loss of retroreflectivity 

properties) which are taken into account for maintenance 

activities. Periodic inspection of road facilities has to be ensured 

(European Commission, 2013) in order to keep the safety 

standards in the road network. The aforementioned maintenance 

activities are typically conducted by qualified personnel of the 

transportation agencies, who draw up reports taking into account, 

among other features, the type, location, geometry or 

retroreflectivity of each traffic sign. The report is finally used for 

maintenance planning, considering all the elements that do not 

meet the quality standards. Normally, the whole inspection 

process is carried out manually, and therefore it may be biased 

under the knowledge and subjectivity of the inspection team. The 

automation of the inventory and maintenance planning tasks will 

reduce the inspection bias and the life-cycle cost of the traffic 

signs, consequently improving both quality and safety of the road 

network and saving public resources.  

 

Mobile Mapping Systems are vehicles equipped with different 

remote sensing systems, such as light detection and ranging 

(LiDAR) laser scanners, RGB cameras, and navigation sensors. 

Laser scanners are capable of collecting dense and precise three-

dimensional (3D) data that gather both radiometric and geometric 

information of the surveyed area. These data is comprised of a 

set of unorganized 3D points (point cloud) that can be processed 
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and applied to road network inspection and analysis. Precisely, 

the development of methodologies for the semantic labelling of 

road areas is an active research topic. Some works aim to detect 

and classify a relatively large number of objects, for example Luo 

et al. (2015) distinguish seven categories of objects including 

several forms of vegetation using a patch-based match graph 

structure. Yang et al. (2015) extract urban objects (poles, cars, 

buildings…) segmenting a supervoxel structure and classifying 

the segments according to a series of heuristic rules. Serna and 

Marcotegui (2014) classify up to 20 different objects using 

Support Vector Machines (SVM). Other works focus in the 

detection of a single object class within a point cloud. Street 

lights (Yu et al., 2015), curbs (Zhou and Vosselman, 2012; Wang 

et al., 2015) or trees (Reitberger et al., 2009) can be detected 

using LiDAR data. Regarding traffic signs, Pu et al. (2011) 

distinguish several classes of planar shapes that correspond to the 

possible shapes of traffic signs. In Riveiro et al. (2015) a linear 

regression model based on a raster image is used for classifying 

traffic signs based on their shapes. However, the resolution of a 

point cloud is not enough to distinguish the specific meaning of 

a traffic sign, therefore the study of optical images is needed. 

Wen et al. (2015) detect traffic signs based on their 

retroreflectivity, and project the 3D data on 2D images in order 

to classify the previously detected traffic signs. There exists a 

vast literature regarding traffic sign recognition in RGB images. 

The Traffic Sign Recognition Benchmark (GTSRB) (Stallkamp 

et al., 2012) gathered more than 50,000 traffic sign images and 

established a classification challenge. The best results were 

achieved by Cireşan et al. (2012). They combined various Deep 

Neural Networks (DNN) into a Multi-Column DNN, getting a 

recognition rate of almost 99.5%. Sermanet and Lecun (2011) or 
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Zaklouta et al. (2011) are other state-of-the-art algorithms that 

derive from the GTSRB.  

 

Both laser scanners and optical sensors present advantages and 

disadvantages for the traffic sign inventory task. Laser scanners 

collect accurate geometric data but their resolution may not be 

enough for a semantic analysis, while RGB images are not as 

reliable for 3D analysis but can solve the semantic recognition 

problem.  

 

In this paper, both sources of information are combined in order 

to detect and classify vertical traffic signs in urban and road 

environments, and to extract geometric and contextual properties 

which can be of interest for inventory purposes. In Section 2, the 

proposed method is detailed. In Section 3, the study case and the 

obtained results are shown, and a comparison with Riveiro et al. 

(2015) and with Wen et al. (2015) method (which follows a 

similar workflow) is established. Finally, the conclusions are 

presented in Section 4. 

 

2. PROPOSED METHOD 

While driving a vehicle, drivers are capable of distinguishing 

traffic sings with ease in a relatively complex environment, as 

they typically have a previously learned schema for scanning the 

road. However, if factors like the position, the visibility and the 

condition of the signs do not conform the drivers’ expectations, 

they may be skipped or omitted by them (Borowsky et al., 2008). 

This is one of the reasons that justifies the need of an optimal 

traffic sign maintenance planning in the road network. An 

automated inspection and inventory of the infrastructure will 

improve the efficiency and applicability of the above-mentioned 

maintenance planning.  

 

This section describes a method for the identification of 

geometric and semantic properties of traffic signs, using point 

cloud data and imagery acquired by a MMS that travels along the 

road network. The method is summarized in Fig. 1. First, a 3D 

point cloud is preprocessed and the ground points are removed. 

Then, the retroreflectivity of the signs surface is considered, and 

an intensity-based filter is applied in the cloud. Subsequently, the 

remaining points are clustered and further filtered, considering a 

planarity filter. Finally, each cluster of points is projected into 2D 

images (which are synchronized with the point cloud) in order to 

classify each traffic sign.  

 

2.1 Point cloud preprocessing and ground removal 

The preprocessing procedure requires two main inputs, namely 

the trajectory of the vehicle and the 3D point cloud itself. The 

MMS is comprised of two LiDAR sensors with a maximum range 

of 250 m, however the study cases are restricted to the road 

network. Therefore, points further than 15 meters from the 

trajectory are removed from the point cloud. With this step, 

unnecessary information (mainly buildings in urban 

environments and vegetation in highways) can be effectively 

removed from the process.  

 

Once the point cloud has been preprocessed, the next step aims 

to remove the ground form the 3D cloud. For that purpose, the 

point cloud is projected to the XY plane, where a raster grid is 

created. An index 𝑖𝑑𝑖 is assigned to every cell in the grid, so each  

 

Figure 1. Flowchart which describes the proposed method. 

point in the cloud is unequivocally related to a single cell. 

Subsequently, two features related with the height of the points 

are considered within each cell, which are the accumulated 

height ℎ𝑎𝑐𝑐, and the vertical variance 𝜎𝑧. Both features are used 

for creating a raster image. For a cell 𝑖𝑑𝑖 , the image 𝐼ℎ𝑒𝑖𝑔ℎ𝑡 is 

defined as follows: 

 
𝐼ℎ𝑒𝑖𝑔ℎ𝑡(𝑖𝑑𝑖)   =  

hacc(𝑖𝑑𝑖)𝜎𝑧(𝑖𝑑𝑖)

n(𝑖𝑑𝑖)
 

 

(1) 

 

where  𝑛(𝑖𝑑𝑖) = number of points in the cell 𝑖𝑑𝑖 . 

    

The resulting image is normalized to the range [0,1] and 

binarized, mapping to 0 all pixels where 0 ≤ 𝐼ℎ𝑒𝑖𝑔ℎ𝑡 ≤ 0.001 and 

mapping to 1 the remaining pixels.  

 

Analogously, a second image 𝐼𝑖𝑛𝑡 is created, computing the 

average intensity of the points in each cell, and binarized, using 

the mean of all the elements such that 𝐼𝑖𝑛𝑡 > 0 as threshold value.  

The binary image that results from the logical operation (𝐼𝑖𝑛𝑡  ∧
𝐼ℎ𝑒𝑖𝑔ℎ𝑡) is used for filtering out cells whose points have small 

elevations and intensity values.  Therefore, only off-ground 

points will be analysed in further steps (Fig. 2a). The most 

important parameter that takes part in this process is the raster 

grid size, which is directly related with the resolution of 𝐼ℎ𝑒𝑖𝑔ℎ𝑡 

and 𝐼𝑖𝑛𝑡. Acceptable trade-off between processing time and 

ground removal results are obtained for grid sizes between 0.3m 

and 0.5m. The results in Section 3 have been obtained using a 

grid size of 0.5m.  
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2.2 Intensity filter and point clustering 

The surface of any traffic sign incorporates sheeting with 

retroreflectivity materials. Therefore, light is redirected from the 

sign surface to the source and traffic signs are still visible at night 

(McGee, 2010). The intensity attribute of a 3D point cloud 

acquired with a laser scanner is proportional to the reflectivity of 

the objects, and it is a property that can be used to distinguish 

highly retroreflective objects from their surroundings (González-

Jorge et al., 2013).  

 

Once the ground is removed from a point cloud, a Gaussian 

Mixture Model (GMM) with two components is estimated using 

the intensity distribution of all the points in the cloud. The points 

from the component with biggest mean are considered as 

retroreflective points, whereas the remaining points are removed 

from the cloud.  

 

This step performs a finer intensity filter than the previous step 

where the intensity based raster image 𝐼𝑖𝑛𝑡 was used. The 

remaining point cloud after the application of this filter may 

comprise objects made of retroreflective materials, such that 

traffic signs, license plates, metallic parts in buildings that are 

relatively close to the laser scanner or even pedestrian reflective 

clothing.  

 

The points of these objects, however, still remain unorganized. It 

is necessary to group together points that belong to the same 

object in order to analyse them separately. For that purpose, 

DBSCAN algorithm (Ester et al., 1996) is used. It clusters close 

points with a certain density and marks points in low density 

areas as outliers. This way, the points in the cloud are organized 

and any noise remaining after the previous filtering stages is 

removed.  

 

Finally, it is possible to filter out those clusters that do not follow 

the geometric specifications for vertical traffic signs, which are 

previously known. Only planar clusters whose height is between 

0.3m and 5m are kept. The planarity of a cluster is defined as: 

  

 
𝑎2𝐷   =  

√𝜆2 − √𝜆3

√𝜆1

 

 

(2) 

 

where  (𝜆1, 𝜆2, 𝜆3) are the eigenvalues of the covariance matrix 

of the points within the cluster. Following the criteria of Gressin 

et al. (2013), a cluster of points is considered as planar if 𝑎2𝐷 <
1/3. This removes non-planar clusters, while the height 

restriction filters objects such as license plates that could be a 

source of false positives (Fig 2b).  

   

2.3 Geometric inventory 

At this point of the process, it is assumed that each cluster 

represents a traffic sign. Therefore, the organized point cloud 

data can be analysed and several features of interest can be 

retrieved.  

 

Note that the traffic sign detection process relies on the intensity 

attribute of the 3D points and therefore in the retroreflectivity 

properties of the traffic sign surface. The detected clusters do not 

contain traffic sign poles even though they should be taken into 

consideration for the inventory together with the sign panel, as 

they can be bent or inclined.  

 

Figure 2. (a) Ground segmentation. The points in the ground (painted in 

brown) are filtered from the point cloud. (b) Intensity filter. Points of 

reflective objects (painted in red) are selected.  

Before obtaining any parameter, each cluster is analysed in order 

to determine if the traffic sign is held on a pole. For that purpose, 

a region growing approach reconstructs the sign panel 

surroundings, and an iterative pole-like object detection is 

performed, searching for a group of points under the traffic sign 

panel whose linearity 𝑎1𝐷 > 0.5, being  

 

 
𝑎1𝐷   =  

√𝜆1 − √𝜆2

√𝜆1

 

 

(3) 

 

If a pole is found, its director vector is defined as the eigenvector 

𝑒1 corresponding with the biggest eigenvalue 𝜆1 for the points 

which scored the largest 𝑎1𝐷 value in the iterative process, and 

the inclination angle of the pole is computed in both front view 

(𝛼𝑣) and profile view (𝛼𝑒) of the sign. Furthermore, and 

independently of the existence of a pole holding the sign, the 

following parameters are extracted from each cluster: 

 Position (𝒑𝑠), a (x,y,z) point defined as the  centroid of 

the points of the traffic sign panel.  

 Height (ℎ𝑠) of the traffic sign with respect to the 

ground.  

 Azimut (𝑎𝑧𝑠). Clockwise angle between the projection 

of the normal vector of the sign panel on the XY plane 

and the North.  

 Contextual parameters, namely the distance (𝑑𝑡) and 

the angle (𝛼𝑡) between the traffic sign and the 

trajectory.  

 

Finally, a vector with the parameters 𝒑𝒂𝒓𝒎𝒔 =
(𝒑𝑠, ℎ𝑠, 𝑎𝑧𝑠, 𝑑𝑡 , 𝛼𝑡, 𝛼𝑣, 𝛼𝑒) is assigned to each cluster of points, 

and defines the geometry of the traffic sign. (Fig. 3) These data 

may be used to update any existing database and to be compared 

with the information collected in previous surveys in order to 

detect changes in the geometry of the sign.  

 

2.4 Point cloud projection on images and traffic sign 

recognition 

The geometric parameters defined in the previous step do not 

offer the complete meaning of a traffic sign. The specific class of 

each sign must be retrieved from the MMS data together with the 

geometric inventory. For that purpose, the 3D points of each 

traffic sign are projected into 2D images taken during the survey. 
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Every 2D image has associated with it the position and 

orientation of the vehicle, and the GPS time in the moment each  

 

Figure 3. Geometric inventory. Different parameters can be extracted 

using the point cloud data (a) Front view of the traffic sign. (b) Lateral 

view of the traffic sign. (b) Contextual features using the trajectory. 

image is taken, which is synced with the 3D point cloud. The 

usage of 2D images is motivated by the aforementioned 

insufficient resolution of laser scanners for the traffic sign 

recognition task. 

 

The inputs for this process are the traffic sign clusters (which 

were obtained in Section 2.2 and contain the coordinates and time 

stamp for each point of the sign), the 2D images, the data 

associated with each image (mainly time stamp and vehicle frame 

for every image), and the orientation parameters of the four MMS 

cameras with respect to the vehicle frame.  

 

Let 𝑆 = (𝒙, 𝒚, 𝒛, 𝒕𝒔) be a traffic sign cluster. First, only those 

vehicle frames whose time stamp is in the range of 𝒕�̅� ± 5𝑠 are 

selected. Subsequently, the points in the cloud are transformed 

from the global coordinate system to each vehicle coordinate 

frame. This way, both the 3D cloud and the coordinate system of 

each camera 𝑗 (𝑗 = 1 … 4) are measured from the same origin.  

 

The camera plane 𝜋𝑗  and the principal point 𝑝𝑗 of the camera 𝑗 

are defined as: 

  

𝜋𝑗  ≡  𝒗𝑗 · [(𝑥, 𝑦, 𝑧) − (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗)] =  0 (4) 

 
  

𝑝𝑗 =  −𝑓𝑗(𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗)
𝑇

𝒗𝑗 (5) 

 

 

 

where  𝒗𝒋 is the principal axis, 

  𝑓𝑗  is the focal distance 

and  (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗) is the optical centre. 

 

Finally, points in 𝑆 are projected to 𝜋𝑗 . The projection on camera 

coordinates (𝑑𝑢, 𝑑𝑣) of each point is transformed to pixel 

coordinates (𝑥𝑝𝑖𝑥, 𝑦𝑝𝑖𝑥): 

  

𝑥𝑝𝑖𝑥 =  
𝑑𝑢

′ + 𝑐𝑥

𝑠𝑝𝑖𝑥
 

(6) 

   

𝑦𝑝𝑖𝑥 =  
𝑑𝑣

′ + 𝑐𝑦

𝑠𝑝𝑖𝑥
 

(7) 

 

 
 

where  (𝑑𝑢
′ , 𝑑𝑣

′ ) is the distorted image point, considering 

radial distortion, 

  (𝑐𝑥, 𝑐𝑦) is the principal point of the camera 

and  𝑠𝑝𝑖𝑥 is the pixel size. 

 

This process is graphically described in Fig. 4a. With this 

projection, the region of interest (ROI) of one or several images 

which contains the same traffic sign can be precisely defined. In 

order to add some background to the ROI and minimize possible 

calibration errors, a margin of 25-30% of the ROI size is added 

to the initial region (Fig 4b).  

 

Once the images that contain a traffic sign are stored, a Traffic 

Sign Recognition (TSR) algorithm can be applied. There already 

exist numerous TSR methods which have proven remarkable 

results as mentioned in Section 1. Since this work is focused on 

3D point cloud processing and not on image processing, the TSR 

method used will be briefly outlined.   

 

For each image, two colour – red and blue – bitmaps are created, 

based on the pixel intensity of the image in Hue-Luminance-

Saturation (HLS) space. The shape of the binary image is 

classified in seven classes that represent traffic sign categories 

(prohibition, indication…) using Histogram of Oriented 

Gradients (HOG) (Dalal and Triggs, 2004) as feature vector and 

Support Vector Machines (SVM) (Cortes and Vapnik, 1995) as 

classifier. Given the sign category, a second classification is 

performed. A colour-HOG feature is used in this case, which is 

created by concatenating the HOG feature of each colour channel 

of the image in the CIELab colour space (Creusen et al., 2010). 

This feature is again classified by means of SVM, and the type of 

the sign is finally retrieved. 

 

Figure 4. Point cloud projection on images. (a) The points of a traffic sign 

panel are projected into the camera plane. The distances of the projected 

point with respect to the principal point of the camera are transformed to 

pixel coordinates. (b) The bounding box of the projected points (red 

rectangle) is extended (green rectangle) in order to add some background 

to the detection, and the image is cropped.  
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3. RESULTS 

This section presents, in the first place, the case study in which 

the method in Section 2 was tested. Then, the results for traffic 

sign detection and point cloud projection on images are shown, 

compared, and discussed.  

 

3.1 Case study 

The surveys for the case study were conducted using a LYNX 

Mobile Mapper by Optech Inc. (2012), which is equipped with 

two laser scanners, located with a 45 degree angle with respect to 

the trajectory and 90 degrees between their rotational axes. The 

field of view (FOV) of the scanners is of 360 degrees. An Inertial 

Measurement Unit (IMU) and a two-antenna measurement 

system (GAMS) compose the navigation system. Furthermore, it 

is equipped with four 5-MPix JAI cameras which are synced with 

the scanners (Fig 5a). An analysis of the MMS can be found in 

(Puente et al., 2013). 

 

Two different scenarios were surveyed in Galicia, in the north-

west of Spain, concretely a centric, crowded avenue in the city of 

Lugo, and a highway section that includes Rande’s bridge (which 

is 1.5km long) and sections of conventional roads (Fig 5b). The 

survey areas were open during the circulation of the MMS, and 

the traffic was dense in both cases. The data associated with the 

survey can be found in Table 1. 

 

Area Strips Points Traffic Signs Images 

Lugo (Urban) 5 129553905 65 964 

Rande (Road) 3 145759301 78 1884 

Table 1. Case study data 

 

3.2 Results and discussion 

Traffic sign detection results for the study case are shown in 

Table 2. The parameters that measure the results, where TP are 

True Positives, FP are False Positives and FN are False 

Negatives, are defined as: 

 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝐹𝑃 + 𝑇𝑃
 (8) 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝐹𝑁 + 𝑇𝑃
 (9) 

 
𝐹1 𝑠𝑐𝑜𝑟𝑒 =

2 ·  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (10) 

Area Precision (%) Recall (%) F1 score (%) 

Lugo (Urban) 86.1% 95.4% 90.5% 

Rande (Road) 92.8% 100% 96.3% 

Global 

performance 

89.7% 97.9% 93.4% 

Riveiro et al., 

(2015) 

91.3% 90.9% 91.1% 

Wen et al., 

(2015) 

91.63% 93.77% 92.69% 

Table 2. Assessment and comparison of the method. 

 

Figure 5. Case study. (a) Mobile Mapper System used for the survey. (b) 

Map of the surveyed areas.  

A precision of 89.7% and a recall of 97.9% are obtained. The 

recall value is especially remarkable as only a 2% of the traffic 

signs in the case study are not detected with this method. 

However, there exist a 10% of false positives. Pedestrian 

reflective clothing and planar, metallic objects are the main 

sources of false positives. The results are worse for the urban 

environment as it is a cluttered scenario where the number of 

reflective objects is larger.  

 

The proposed method is compared, first, with in Riveiro et al. 

(2015). The modifications in the methodology have significantly 

improved the recall although the precision is slightly worse. 

Finally, a comparison with Wen et al. (2015) shows a better 

global performance of this method. However, the case studies are 

different for both results, therefore the comparison may not be 

totally accurate.  

 

Finally, the overall quality of the point cloud projection onto 2D 

images is quantified. More than 200 images which contain a 

traffic sign detected in a 3D point cloud (both urban and highway 

case studies were considered) were manually cropped in order to 

generate a ground truth. Then, these images were compared with 

the bounding boxes obtained with the automatic projection. 

Precision and recall metrics were used for quantifying the results, 

being: 

  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =   
𝑃𝑟𝑜𝑗𝑟𝑒𝑐𝑡 ∩ 𝐺𝑇𝑟𝑒𝑐𝑡

𝑃𝑟𝑜𝑗𝑟𝑒𝑐𝑡
 

(11) 

   

𝑅𝑒𝑐𝑎𝑙𝑙 =   
𝑃𝑟𝑜𝑗𝑟𝑒𝑐𝑡 ∩ 𝐺𝑇𝑟𝑒𝑐𝑡

𝐺𝑇𝑟𝑒𝑐𝑡
 

(12) 

 

 
 

where  𝑃𝑟𝑜𝑗𝑟𝑒𝑐𝑡 is the rectangle obtained after the 

projection of the traffic sign points on the image. 

  𝐺𝑇𝑟𝑒𝑐𝑡 is the manually cropped rectangle. 

 

A precision of 92.8% and a recall of 67.75% were obtained. 

These results justify the addition of a margin that increases the 
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size of the projection, as introduced in Section 2.4. This way, the 

recall gets close to 90%. 

 

Results for traffic sign recognition in 2D images are omitted in 

this paper as they are still far from the state of the art.  

 

4. CONCLUSIONS 

This paper presents a method for an automated detection, 

inventory and classification of traffic signs using 3D point clouds 

and imagery collected by a LYNX Mobile Mapper system. The 

radiometric properties of the traffic sign panels (made with 

retroreflective sheeting) are essential in this method, as the 

intensity attribute of the points in the cloud is the main feature 

used for the segmentation process. Existing algorithms 

(DBSCAN, GMM, PCA…) are combined in order to develop a 

methodology that allows to group together points that belong to 

the same traffic sign. Several geometric properties can be 

extracted from each detected sign in the point cloud which can be 

useful for the maintenance planning of the road network. 

Furthermore, the 3D information is projected into RGB images 

collected by the MMS allowing the application of a TSR 

automatic algorithm and the consequent semantic definition of 

each traffic sign. 

 

The results obtained in this work are promising. However, the 

TSR has to be improved in order to offer a robust, fully automated 

process. The lack of a Spanish traffic sign image database has 

been a drawback, as the number of instances for several sign 

classes was not enough to obtain robust classification models.  

Together with an improvement in the TSR results, future work 

should be focused in offer a more complete definition of the road 

network, that is, to detect other elements of relevance as road 

markings or traffic lights. Finally, this information should be 

conveniently integrated in a road network database.  
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