The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B3, 2016
XXIIl' ISPRS Congress, 12—19 July 2016, Prague, Czech Republic

NEXT-BEST-VIEW METHOD BASED ON CONSECUTIVE EVALUATION OF
TOPOLOGICAL RELATIONS

K. O. Dierenbach?, M. Weinmann®, B. Jutzi®

* Institute of Photogrammetry and Remote Sensing, Karlsruhe Institute of Technology (KIT), Germany
dierenbach.kai @ googlemail.com; (martin.weinmann, boris.jutzi) @kit.edu

Commission III, WG III/1

KEY WORDS: LiDAR, Point Cloud, Object Reconstruction, Next-Best-View Problem, Growing Neural Gas

ABSTRACT:

This work describes an iterative algorithm for estimating optimal viewpoints, so called next-best-views (NBVs). The goal is to incre-
mentally construct a topological network from the scene during the consecutive acquisition of several views. Our approach is a hybrid
method between a surface-based and a volumetric approach with a continuous model space. Hence, a new scan taken from an optimal
position should either cover as much as possible from the unknown object surface in one single scan, or densify the existing data and
close possible gaps. Based on the point density, we recover the essential and structural information of a scene based on the Growing
Neural Gas (GNG) algorithm. From the created graph representation of topological relations, the density of the point cloud at each
network node is estimated by approximating the volume of Voronoi cells. The NBV Finder selects a network node as NBV, which
has the lowest point density. Our NBV method is self-terminating when all regions reach a predefined minimum point density or the
change of the GNG error is zero. For evaluation, we use a Buddha statue with a rather simple surface geometry but still some concave
parts and the Stanford Dragon with a more complex object surface containing occluded and concave parts. We demonstrate that our
NBYV method outperforms a “naive random” approach relying on uniformly distributed sensor positions in terms of efficiency, i.e. our

proposed method reaches a desired minimum point density up to 20% faster with less scans.

1. INTRODUCTION

Acquiring the complete surface of an unknown object with a rang-
ing device (e.g. a range camera or a laser scanner) requires mul-
tiple observations taken from different viewpoints around the ob-
ject. Thereby, the viewpoints of the ranging device are typically
selected by the user based on heuristic or empiric knowledge
about the scene and/or the data, a process which may be time-
consuming and costly. Accordingly, it seems desirable to reduce
human effort by automatically selecting appropriate viewpoints,
particularly for applications where a larger number of scans is
required to adequately cover an object or region of interest.

Given data which have been acquired from one viewpoint or from
more viewpoints, an important research topic is addressed by au-
tomatically estimating successive viewpoints in a way that the
considered scene is appropriately covered and that the number
of respective viewpoints is as small as possible. Hence, a new
scan taken from an optimal position should either cover as much
as possible from the unknown object surface in one single scan,
or densify the existing data and close possible gaps. This is-
sue has been addressed with view planning methods which are
also referred to as next-best-view (NBV) methods. While early
NBYV methods have already been presented decades ago (Con-
nolly, 1985), more and more attention has been paid to them re-
cently, and respective approaches have been presented for dif-
ferent environments, different tasks and different levels of the
desired accuracy. The emerging interest in such techniques is
mainly due to technological advancements allowing a faster com-
putation and due to powerful techniques of machine learning.
Both of these aspects represent important prerequisites for the
development of complex autonomous applications.

Addressing the NBV problem, early investigations focused on
turntable-based approaches (Pito, 1999) and on model-based ap-
proaches (Scott et al., 2003). However, such approaches are tai-

lored to controlled environments where strong assumptions about
either the change in viewpoint or the possibly occurring objects
are made. Respective assumptions cannot be made that easily
for an autonomous exploration of unknown space (Dornhege and
Kleiner, 2013) or for the 3D reconstruction of unknown objects in
both indoor and outdoor scenes (Kawashima et al., 2014; Visquez
and Sucar, 2011; Bissmarck et al., 2015). Accordingly, a new
generation of model-free approaches for NBV estimation is re-
quired, where approaches relying on acquired object surfaces seem
to be more promising (Scott et al., 2003), since they are also ap-
plicable for unknown environments as well as for objects which
exhibit a concave surface geometry.

In this paper, we focus on the use of ranging devices such as
range cameras or laser scanners in order to acquire the complete
surface of an unknown object within an indoor environment and,
given a point-sampled object surface, we intend to find the next-
best-view in a data-driven manner. For this purpose, we take into
account the point density of the given data. Based on the point
density, we recover the essential and structural information of a
scene which we call the fopology. In this context, an undirected
graph representing the topology of the considered scene is incre-
mentally constructed by clustering the data in the input space to
get the topological relations. For this, the Growing Neural Gas
algorithm is applied. Next-best-views are thus derived by con-
secutively evaluating the density of the point-sampled object sur-
face.

In the following, we first outline related work in Section 2. Subse-
quently, in Section 3, we explain our methodology in detail. For
testing our methodology, we build a simulation framework which
is described in Section 4 and allows to generate synthetic, but
near-realistic scenarios. For two exemplary scenarios, we provide
the experimental results derived by applying our methodology in
Section 5. These results are finally discussed in Section 6.
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2. RELATED WORK

While the NBV problem has also been addressed for applications
focusing on 3D reconstruction based on camera images (Wen-
hardt et al., 2006; Dunn and Frahm, 2009; Alsadik et al., 2012),
we focus on the use of a ranging device such as a range camera
or a laser scanner for data acquisition. Accordingly, we provide
a glance view on NBYV approaches proposed for data acquisition
via ranging devices in the following paragraphs.

A rather intuitive way for acquiring the complete surface of an un-
known object with a ranging device consists in uniformly placing
enough viewpoints around the object of interest in order to recon-
struct its surface. However, this is inefficient and also ineffective
when dealing with complex object geometries. Instead, it is more
efficient to use a method that exploits the available data to make
a direct decision about where to place a new viewpoint.

Involving the already available data, a respective approach fo-
cusing on the completion of a 3D model of an unknown object
has for instance been presented in (Kriegel et al., 2011), where
the first step consists in creating a mesh from a real-time data
stream. Subsequently, this surface information is used to de-
tect boundaries in the surface which, in turn, serve for estimat-
ing a quadratic patch. Finally, possible viewpoints are derived
by looking perpendicular to the estimated patch at a certain dis-
tance. Furthermore, the completion of a 3D model of an unknown
object has been addressed with a NBV approach based on the
measure of information gain as a metric for evaluating potential
next-view candidates in terms of the respective reduction of un-
certainty (Krainin et al., 2011). By maximizing the information
gain of a new viewpoint relative to the current reconstruction, the
next view to be selected for a range camera looks at the most
uncertain surface areas of the considered object.

The measure of information gain is also exploited in the approach
presented in (Potthast and Sukhatme, 2014), where the focus is
put on the exploration of cluttered environments. In this ap-
proach, a belief model of the unobserved space is used to esti-
mate the visibility of occluded space and, thus, also predict the
expected information gain of each possible next-view candidate.

The NBYV approach proposed in (Wu et al., 2014) relies on ob-
served voxels of an unknown 3D object captured by a range cam-
era from a single view and a finite list of next-view candidates,
where each candidate is characterized by a translation and rota-
tion in 3D space. In order to select the most promising view from
the list (i.e. the next-best-view), the recognition uncertainty ex-
pressed by the measure of conditional entropy is considered for
each next-view candidate, and the next-best-view is chosen as
the one which reduces recognition uncertainty the most. In this
context, the reduction of entropy corresponds to the mutual in-
formation, and minimizing the recognition uncertainty therefore
corresponds to maximizing the mutual information. As a conse-
quence, the proposed NBV algorithm simply selects the view that
can maximize the mutual information.

In (Dornhege and Kleiner, 2013), an approach for the exploration
of unknown environments is proposed based on the definitions of
voids as unexplored volumes in 3D space and frontiers as regions
on the boundary between voids and explored space. More specit-
ically, 3D point clouds are captured and registered with the exist-
ing point cloud data, and subsequently they are integrated into the
hierarchical octomap data structure. After the registration, those
areas are extracted which are occluded or enclosed by obstacles.
These areas correspond to unexplored volumes in 3D space and
serve for generating voids. The voids are combined with nearby

frontiers in order to estimate next-view candidates for observing
the unexplored space. Additionally taking into account visibility
constraints, locations are determined from which as many of the
void spaces as possible are visible. According to their assigned
visibility score, these locations are then visited sequentially until
the entire space has been explored.

A further approach for solving the NBV problem has been pre-
sented for an autonomous reconstruction of objects (Vasquez-
Gomez et al., 2013). This approach focuses on the generation of
next-view candidates by uniformly sampling viewpoints around
the sensor and a subsequent ranking of these next-view candi-
dates according to their suitability for the reconstruction process.
Thereby, the ranking is derived by applying a utility function
which, in turn, is defined as a product whose factors rely on con-
straints addressing the occupancy of the local voxel space, the
overlap of a new surface with previous surfaces, the visibility of
unknown voxels, and the distance of next-view candidates to the
current view. The whole framework also involves a scene repre-
sentation by octrees with a hierarchical ray tracing that signifi-
cantly reduces the visibility computation time.

Besides taking into account rather intuitive constraints, it has also
been proposed to consider further information which might be
valuable for an accurate 3D reconstruction of an unknown 3D
object. In this regard, a NBV approach has been presented which
also considers the positioning error of the sensor and selects the
view that minimizes the effects of this error (Vasquez and Su-
car, 2011). More specifically, candidate views are generated via
a uniform sampling of 3D space, and each of these views is char-
acterized by (i) a configuration formed by the position and the
orientation towards the object and (ii) a numerical value assigned
by a utility function evaluating the respective configuration by
exploiting ray tracing based on the current state of the model.
Thereby, the numerical value is rather high for views considered
as good views. Finally, the utility function is convolved with a
Gaussian function taking into account the positioning error. This
allows to re-evaluate candidate views according to their neigh-
bors, so that views with lower positioning errors are preferred.

In (Soudarissanane and Lindenbergh, 2011), the selection of op-
timal scan positions for acquiring an indoor scene with a terres-
trial laser scanner is investigated with a particular focus on the
influence of both incidence angle and range limitation. Based on
these constraints, visibility polygons are defined for a 2D map
corresponding to a 2D projection of the scene onto a horizontally
oriented plane. Then, potential viewpoint locations are derived
by discretizing the scene via a gridding with predefined steps
and, by considering the defined constraints, an optimal number
of viewpoints is determined which allows to appropriately cover
the considered scene.

A NBYV approach specialized to the acquisition of piping objects
with a laser scanner is presented in (Kawashima et al., 2014). Af-
ter each scan, piping objects are detected and those spaces are
estimated which are occluded by these piping objects but might
be occupied by unseen piping objects. Based on this informa-
tion, the next-best-view is derived in a way that minimizes the
occluded spaces.

3. METHODOLOGY

This section starts with a short overview of the methodology pro-
posed in this paper (Figure 1). Subsequently, we provide a de-
tailed description of the single parts in different subsections. As
mentioned in previous work from (Bissmarck et al., 2015), we
assume an obstacle-free work space where the sensor can move
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Figure 1. Flowchart of the complete NBV pipeline with the re-
lated sections. The chart is divided in four parts, beginning at the
top with the dashed grey line which indicates the data generation,
described in Section 4. The following solid grey parts belong to
the methodology explained in Section 3.

to any position around the object, what makes the sensor space
continuous. In addition, the object space lies inside the work
space, but is not a part of it. Due the sampled data, the object
space is discrete. To show the contrast to other NBV approaches,
we follow (Scott et al., 2003) and subdivide the non-model based
NBYV methods in three categories: surface-based, volumetric and
global ones. Our approach principally belongs to the surface-
based methods, since it is completely data-driven. However, the
involved topological model (Section 3.2) and the density approx-
imation (Section 3.3.1) rely on volumetric considerations. As a
consequence, our approach is a hybrid method with a continuous
model space. This allows the NBV Finder (Section 3.3) to use
almost every position of the model for the NBV.

At the beginning of the NBV pipeline, an initial orientation and
position for the sensor is defined. We assume that the first scan
tries to acquire as much as possible from the object surface. The
initial orientation and position parameters are usually set by the
operator in the Operator layer. In this work, the Operator layer
is not active and shows only where the possible user interaction
may occur. The actual motion is set and processed only by the
Transform sensor motion block in Figure 1, top row. This block
transforms the orientation and position parameters in a specific
format and transfers them to the Simulator. This separate step
is necessary because the Simulator should stay as a standalone
module which can be easily replaced by a real sensor if needed.
Now, the Simulator acquires a single point cloud Py, from the de-
sired location under consideration of the underlying sensor model
(see Section 4.2 for details). The raw point cloud is then streamed
to the Registration block and a subsequent Filtering based on an
approximate bounding box. Afterwards, a self-organizing vector-

based clustering algorithm represented by the Growing Neural
Gas (GNG) algorithm (Section 3.2) is updated with a subset of
the complete point cloud set . From the created graph repre-
sentation of topological relations, the density of the point cloud
at each network node is estimated and the NBV Finder now se-
lects that network node as NBV which has the lowest point den-
sity pmin (Section 3.3). The position and orientation in the sensor
space are computed and transferred back to the Simulator where
the operator or a robot moves the sensor to the new position, re-
spectively in our case the Transform sensor motion block which
provides the sensor position to the Simulator. The next scan of
a new point cloud begins. Our NBV method is self-terminating
when (i) the maximum scan number is reached, (ii) all regions
reach a pre-defined minimum point density or (iii) the change of
the GNG error is zero.

3.1 Data Registration and Filtering

The data is given in the form of a set of 3D point clouds P =
{P1,...,Pn} containing the single point clouds P}, at scan time
k with k € N. For further processing, the reference frame has to
be changed from the sensor coordinate system to a local world
coordinate system. Due the fact that the Simulation Framework
(see Section 4 for more details) provides accurate position and
orientation parameters {t_;;, B?k} € Ty, for the sensor, this pro-
cess is simple and straightforward: Py, = T} (75k) This work
doesn’t deal with the registration of point clouds, we focus mainly
on the next-best-view search. For finding the optimal parameters
between two sets of point clouds, we refer to (Weinmann, 2016).

After the registration, an approximate bounding box is used to re-
move points further away which are not of interest. This reduces
the spread of the object space what gives a better start configura-
tion. The size of the bounding box can be a problem, since there
is no prior information about the size of the object or the whole
scene, respectively. Therefore, after every scan, the barycenter
and the size of the bounding box are again derived from the geo-
metrical size of P. For increasing the overall performance, every
time a new point cloud from the simulator is streamed, the com-
plete set of point clouds P is shuffled and randomly subsampled
to a small amount of the original size. This method preserves the
topology and structure of the data. The influence for the clus-
tering is not significant as the overall characteristic of the point
cloud will be preserved. This subset D C P (see Figure 1, center
part) of the input data has a constant size M.

3.2 Building a Topological Model via the Growing Neural
Gas algorithm

The Growing Neural Gas (GNG) algorithm presented in (Fritzke,
1995) is a vector-based learning method which is capable of build-
ing (clustering) topological relationships that are present in the
input space by applying the Competitive Hebbian Learning (CHL)
rule. The neurons in the m-dimensional continuous output space
R™ are competing for the right to respond to a given input signal
.{ with 5 € R" of the discrete input training dataset D. A sin-
gle input signal contains three coordinates of a point in the input
space. Only one neuron (in our case, the first and second place)
can win the competition. This is basically called the “winner-
takes-all” scheme.

Like Vector Quantization (VQ), Self-Organizing Maps (SOM) or
Neural Gas (NG) — for which an overview is provided in (Fritzke,
1998) — the GNG algorithm builds a graph (also referred to as
network) from input training samples. This graph contains a set
of nodes A = {c1,...,cn} with the associated reference vec-
tor W, € R™ and the local accumulated error e.. The reference
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vector can be seen as the node position in the n-dimensional in-
put space R™. Furthermore, the graph contains a set of edges C =
A x A which represent the connections between the nodes. These
connections are symmetrical, i.e. (ci,c;) € C < (¢j,¢) € C,
and therefore the graph is undirected. The set of nodes and edges
are part of the topological model to map the object.

The difference to SOMs and similar methods is the growing net-
work size IV, i.e. an increasing number of nodes. A fixed network
size is not practical due the requirement of capturing all kinds
of unknown objects and surface geometries without any prior
knowledge. The GNG method is self-adaptable to the size of
the input data and to the underlying unknown distribution P (5)
For point clouds, the input space is discrete and can be described
by the finite subset D = {.;ﬁ, . 7£X/1} with 5_2 € R"™. The GNG
method allows to learn the geometry of the object in an unsuper-
vised manner. No offline training stage is required. The training
takes place online and only relies on the available data.

In the following part, the GNG algorithm and the modifications
for making it more adjustable for non-stationary input distribu-
tions (related to (Wu et al., 2014)) is described. The core GNG
algorithm scheme is mainly based on (Fritzke, 1995).

—

1. Start with two nodes A = {c1,c2} from P(&). These two
nodes belong to random positions wy and ws in R™.

2. Generate a random input signal E according to P(g) and find
the nearest node s; and the second nearest node sa:

Sn = argmin ||€ — @,|| 1)
ceA

3. Adapt the winning reference vector and its direct topological
neighbor toward & by a small amount with the learning rate n

Aws, = (t)(€ — ws,)

" @
Awp = m2(t)(§ — wn)

for all direct neighbors of s1 Ve € N (n), given that 7 (¢) >
n2(t) with the training epoch ¢, ¢ € N. For faster adaption
to the new input signal and for better convergence, annealing
the learning rate helps, which means that the learning rate
decreases every training step ¢. This is a common strategy
widely used in the field of machine learning because only
one hyperparameter more has to be set:

t /tmax
() = i ("ﬁ“) 3)

Tlin

where 7, is the initial learning rate and 74, the final one.
In addition, the learning rate 7, is bisected every time the
GNG network is updated with new data to prevent too much
oscillating from the changing data distribution.

4. Create a new edge between the winner s; and the second
winner s2 and set the age to zero. Increment the age of all
edges that are connecting with s;. Remove old edges with
a larger age than amax and remove possible remaining nodes
without an edge as well.

5. Update the local error by Ae(sy) = ||€ — @, || with the
squared distance between the input signal and the nearest
node in the input space.

6. If the number of generated input signals 5 is an integer mul-
tiple of )\, insert a new node:

e Search the node ¢ with the maximum accumulated er-
IOT €.

e Insert a new node r between ¢ and its topological
neighbor p by W, = 0.5(wWp + Wg).

e Replace the edge C(g, p) with the new edges C(q, r)
and C(r, p).

e Decrease the error of ¢ and p by multiplying it with a
constant @ € [0, 1]. The error of the new node r is the
new error of p.

e Decrease all error variables by the constant 5 € [0, 1]
with Ae. = —fec.

7. Go back to step 1, until the maximum number of training
epochs tmax is reached. One epoch ¢ is one full training cycle
on the training set. To get the overall performance of the net-
work, the L2-Norm of the local error e. followed by a divi-
sion with the squared root of the current network size IV re-
sults in the root-mean-square-error (RMSE), which is com-
puted after every training step ¢: RMSE(t) = ||ec||2/V/N.
Once every sample E from the set is seen, the training set D
is shuffled and the next training epoch starts.

Most of these hyperparameters are robust and can be used for
different objects. The hyperparameter set for this work is shown
in Table 1. After termination of the GNG algorithm, the nodes .4
and the edges C are stored and used later as start configuration for
the update step.

3.3 The NBYV Finder

To find the next-best-view, it is necessary to localize where the
topological model from Section 3.2 is incomplete, which implies
that the reconstructed point cloud P still contains gaps and that
the point density on the object surface is not sufficiently dense.
This process of evaluating the topological relations under consid-
eration of low point density regions is described in the following.

For finding regions with low point density, every data point from
the input space R"™ is associated with one reference vector .
Every reference vector can been seen as a Voronoi cell V.. A
Voronoi cell V. defines a region in which a data point is closer to
one node ¢ with the reference vector . than to any other node:

V., = {Ee R"|c = arg min||€ — wc||} )
ceA

Accordingly, every Voronoi cell V. describes a convex region of
R™. Through the partitioning of R™ by the Voronoi cells, it is
equivalent to a Voronoi set R. which contains every point from
D that belongs to V.:

Re = {56 D|s(§) = c} 5)

The next goal consists in computing the volume 2. of V. and
in estimating the density p. with respect to R. for each of the
network nodes ¢, .

3.3.1 Density estimation from unbounded Voronoi cells For
estimating the point density of a surface or 3D volume, the size of
the volume is required. The Voronoi cells V. represent a convex
subspace of the input space with the Voronoi set R.. In the 2D
case, it is unambiguous to calculate the surface area if the cell is
bounded. In an unbounded case, a simple rectangular bounding
box can be used. For higher dimensional cases like 3D space, the
Voronoi cell is usually unbounded and the volume computation is
much more complex. It is theoretically possible to compute first
a Delaunay Triangulation and afterwards a convex hull for each
Voronoi cell to get the volume. But the GNG network { A, C} is
not presenting triangles, the result is unpredictable and the con-
vex hull gives mostly a volume that is overestimated.
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To avoid these restrictions, we introduce a three step approxima-
tion which is more obvious and simpler to overcome the explicit
volume computation of 3D Voronoi cells.

1. Simultaneous spherical growing at each network node c,,.
The growing for a single sphere ©. stops, if the sphere in-
tersects with another neighboring sphere.

2. For each Voronoi cell V., do a simultaneous spherical grow-
ing at each single point in the Voronoi set R.. The growing
for a sphere O 5, stops, if the sphere intersects with another
neighboring sphere from R..

3. Forall spheres © = {O., O, } which belong to one Voronoi
cell V.., compute the convex hull (for simplification, named

as H.)
N ¢ (6)

OCCCR™

H. = conv(®) =

whereby C' is a convex set, which contains all points from

O.

The sphere intersections can be computed analytically. The com-
plete growing has an almost linear runtime O(n), nearly inde-
pendent of the growing step size which is around 102 in our
case. The convex hull can be computed in an average runtime of
O(nlogn) with the QuickHull algorithm (Barber et al., 1996).

With H., we also have the volume 2. of the hull. With the
Voronoi set R, the density p. can easily be derived:
Re
c — 7
Pe= Q. )

As indicated in Section 3.2, beside the set of nodes .4 and the set
of edges C, our model also contains the point density p. for each
Voronoi cell V.. With these parameters, the topological model
is complete and the density of the object can be evaluated. The
NBYV determination is explained in Section 3.3.2. The benefit of
this approach is that the location of the nodes in R™ is indepen-
dent from the location of the data points in R™. This is more
flexible than e.g. Occupancy Grid Maps which divide the model
and object space in discrete voxels (Bissmarck et al., 2015).

3.3.2 Determine the NBV To meet the requirements of a dense
object surface, the overall intention is to maximize the average
point density pavg

Pavg = % ;pc — max 3

by summing up the single densities p. and dividing by the net-
work size N. This maximization cannot be solved directly. It
is only approximately solvable by selecting possible good sensor
positions which probably increase pay,. For this, it is necessary
to locate the less dense regions. This can be done by sorting all
pe in ascending order

W = argsort p. ©)]
ceA

with the set of sorted node indices ¥ = {¥; < ¥y < --- < Uy}
W represents the possible next-best-view candidates. The corre-

sponding node with the smallest point density pmin has the lowest

index which is the first element of U:

Cmin = A(\Ijl) (10)

The node cmin With the associated reference vector we,;, is now
the start point of the next-best-view position in the object space.
To compute the associated position and orientation in the sensor

space, the normal from the corresponding Voronoi set R, has
to be estimated to get the direction. This can be done by fitting
a plane through the points R, and subsequently computing the
unit normal vector 72y from the plane. For determining five of the
six degrees of freedom of the motion parameters (described by
the set X) to place the sensor correctly in the local Cartesian co-
ordinate system, three coordinates for the position X = {z,y, z}
and three Euler angles for the orientation X = {¢, 0, (1))} have
to be found, whereby ¢ is the rotation around the z-axis, 6 the
rotation around the rotated x-axis and ) the rotation around the
rotated z-axis, assuming a right hand coordinate system with the
z-axis up and the z-axis to the right. The last degree of freedom
cannot be determined from the normal because the z-axis of the
sensor is pointing towards the node cmin and corresponds to the
normal 7. The angle v remains indeterminate what is not crit-
ical, because the underlying sensor has a quadratic field-of-view
(FOV).

With the knowledge of the underlying sensor model, the length
of the normal can be adjusted to the correct length dx, to get the
optimal distance between the object surface and the NBV sensor
position. This distance is important for the resulting point density
on the object surface. The closer the sensor is to the object, the
denser becomes the recorded part of the surface. Under the as-
sumption of a rectangular FOV and a known size of the imaging
sensor Sim, an approximation from the two-dimensional case can
be made about the required distance to the object surface under a
certain object size Sopj. With the geometrical intercept theorem
assuming a standard single lens construction
Si

dim = <a dX

11
Son (11)

and the thin lens equation, the connection between the focal point
f, the image distance dim and the object distance dx is given by

— dX:f.(‘?ijrl)

12)

The object size Sy is derived from the parameter puser Which is
a pre-defined value set by the operator to ensure that the object
surface has the required point density. This parameter is defined
as the number of points per square meter. There are two possible
modes, depending on pyser:

e Fast Mode: If pyer = 0, the distance between the object sur-
face and the sensor position is approximated, so that the sen-
sor FOV covers as much as possible from the current known
object geometry.

o Densify Mode: For pyer > 0, Sopj is chosen in a way that dx
is the optimal distance to the object surface for the desired
point density per square meter puser-

The only difference between these two modes (in short, FM and
DM) is the stop criterion. The FM terminates if the slope of
the network error RMSE(t) is not decreasing anymore. In other
words, RMSE(t) stops lowering, what means that the network
{A, C} reaches a nearly stable state. DM terminates if pyser >
Pmin Which imply that all of the single point densities p. are greater
than puser. This means that all of the Voronoi cells V. are dense
which leads to the assumption that the object has a dense sur-
face. This simplification can be made, because we assume that
the volume €. is getting smaller and a Voronoi cell V.. converges
with an increasing network size and the proceeding scan steps to
a plane-like surface.
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3.4 Evaluation Strategy

For evaluating the results of our proposed NBV method, it is nec-
essary to find significant evaluation parameters F,. For the re-
construction quality of P, like the completeness, we use the ap-
proximated surface coverage cov (in %) between a reference point
cloud Py and P. Both point clouds are subsampled via Poisson
Disk Sampling (Corsini et al., 2012) to get equivalent point dis-
tances, followed by spherical region growing (Section 3.3.1) for
each point and then counting the sphere intersections between
both point clouds. For detecting and measuring gaps in the re-
constructed point cloud, the averaged absolute “mesh-to-point”
distance davs, between a meshed reference surface and P is calcu-
lated. In addition, the NBV efficiency is measured by the number
of scans kmax Which are required to reach a pre-defined minimum
point density pmin. The number of scans kmax is also important
to see when the Fast Mode terminates, assuming that there are
no large gaps in the reconstructed point cloud anymore. These
parameters can be summarized to the following tuple

Ep = (Cow gab57 kma)n ﬁavg) (]3)

which includes pavg as a remarkable parameter for the achieved
average object point density. For visualizing the gaps in the re-
constructed point cloud, the absolute “point-to-point” distance
between Prr and P under the assumption of a complete recon-
structed point cloud (see e.g. Figure 5) is more plausible.

To show how our method performs in comparison with another
approach, we introduce a “naive random approach”. Finding
good NBV benchmark sets is very challenging. For example,
the benchmark from (Munkelt et al., 2007) was not sufficient
in our case, since the test object was a synthetic cube and not
a real-world object which has typically a shape of much higher
complexity. Other studies consider different tasks and objects or
provide no reference data. Therefore, we use our own approach
for comparison and place uniformly distributed sensor positions
on a sphere around the object, pointing towards the barycenter
of the object. This may be naive but is a common straightfor-
ward method, especially for locally limited objects like the ones
from our test dataset shown in Figure 3. To get these sensor posi-
tions in a simple manner, an icosphere can be used. This type of
sphere has a surface which only contains triangles of equal size.
Also commonly referred to as a geodesic dome, the basic type
is a regular polyhedron called icosahedron and has 20 faces Fb.
The number of faces can be easily extended by subdividing each
triangle into four new triangles and we thus get Fgo and so on.
In addition to making the sphere approximation more consistent,
the sensor positions are not directly the center points of the faces,
but the projected points on a sphere with the same radius.

4. SIMULATION FRAMEWORK

For testing the proposed NBV algorithm, there are different ways
to acquire point-sampled data of 3D objects serving as input for
the algorithm. On the one hand, a ranging device could be used
for acquiring data in a real-world scenario and the data could be
sent to a processing unit. While this is the most realistic case, data
acquisition can however be challenging and time-consuming. Be-
side the high effort and the need of real systems for data acquisi-
tion, the acquisition of accurate ground truth data required to test
and compare algorithms is non-trivial. In this context, ground
truth data may not only be required for the sensor movement, but
also for the 3D structure of a considered object or scene if the
result of 3D reconstruction should be evaluated as well. Instead
of considering a real-world scenario, one could also focus on the

consideration of recorded data and fixed sensor positions. While
this reduces the effort considerably, such a strategy is less flexi-
ble and not practical for testing NBV methods. Consequently, it
would be desirable to allow for testing a NBV algorithm without
involving too much human effort while still being able to preserve
flexibility with respect to possible sensor positions.

This can be realized via a simulation framework which can be
used to create any kind of virtual scenario from a small statue to
a large complex outdoor scenario due to the almost infinite work
space and the arbitrary level of detail. The movement of the sen-
sor can be recorded exactly and, accordingly, exact ground truth
data is available for evaluating the accuracy of derived registra-
tion parameters to reconstruct the scene. The whole data gener-
ation process as shown in Figure 1, first block, is bundled in our
simulation framework together with the point cloud generator, the
sensor motion processing, the data stream for the data and sensor
parameters, and the sensor model. Most of these parts are based
on Blender (www.blender.org), an established open source 3D
animation suite which addresses many different tasks and which
may easily be extended.

4.1 BlenSor Toolbox

The most important part of the considered simulation is a phys-
ically correct ray tracing for single rays which are reflected by
an object surface and get back to the sensor array. To the best of
our knowledge, the most advanced toolbox in this regard is cur-
rently represented by BlenSor (Blender Sensor Simulation Tool-
box) (Gschwandtner et al., 2011). BlenSor is a special ray tracer
for Blender which modifies the ray-tracing to match the sensor
characteristics and thus produces point clouds as obtained with a
respective sensor. In this context, the simulated point clouds may
rely on the use of different sensors, whereby BlenSor takes into
account several physical properties such as backfolding, reflec-
tions and sensor noise (if necessary).

For a scene of medium complexity, a full scan can for instance
be simulated with approximately 12,000 rays per second when
applying the sensor model described in Section 4.2 and testing on
a standard desktop computer with six cores and 16 GB of RAM
under Linux 4.2.0.

4.2 Sensor Model

For our experiments, we use the model of a Time-of-Flight (ToF)
camera exploiting the PMD (Photonic Mixer Device) technology
(Jutzi, 2015). Other devices such as a Microsoft Kinect or a Velo-
dyne HDL are also available in the toolbox and could therefore
also be used. The main advantages of using a ToF camera consist
in the similarity to standard passive sensors like RGB cameras in
terms of the behavior of ray paths, and in the fact that a ToF cam-
era can also be applied in outdoor environments and beyond the
sensor specifications (Weinmann et al., 2011).

The considered sensor model is defined in analogy to the com-
monly used PMD[vision] CamCube representing a state-of-the-
art range camera. Due to the respective sensor array and configu-
ration, the acquired images have a size of 204 x 204 pixels which
corresponds to a quadratic field-of-view of 40° x 40°. Accord-
ingly, the angular resolution of the device is 0.2°.

5. EXPERIMENTS

All experiments were realized with the simulation framework (Sec-
tion 4) and the two test objects shown in Figure 3. In the follow-
ing, we provide our parameter settings and a short runtime test
(Section 5.1) before we present the derived results (Section 5.2).
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5.1 Hyperparameter Adaption

Due the fact that the runtime of the GNG algorithm is O(N?),
the performance is critically linked with number of nodes /N and
also slightly affected by the number of training epochs tma.x and
by the size of the training samples M. Figure 2 shows the influ-
ence of the hyperparameters to the elapsed time for one update
step, which the GNG algorithm needs to update the network with
a new training set. For this performance test, a larger training set
with 50,000 input signals is used.

200
—O-- N = {50,...,500} g
150 |- | === M = {200,...,2000} o
= —O -ty = {100,....,1000} .-
£ 100 /,n/
3 - === 0
50 .o~ 4:9:__,__0,.—-—0'
SRS e b
=:=0= ‘ ‘ ‘ ‘ ‘ ‘ ‘
1 2 3 4 5 6 7 8 9 10

Number of Tests

Figure 2. Test of the three most important hyperparameters (num-
ber of nodes, number of training samples and number of maxi-
mum training epochs) on runtime influence. Every hyperparam-
eter run through ten tests, indicated on the x-axis, in the value
range as displayed. During each run, the other two hyperparame-
ters are set on a constant mid-range value, respectively.

Figure 2 (dashed-dot line with square markers) clearly reveals the
effect on the runtime if the number of network nodes [V increases.
Therefore, we use for the experiments the smallest number of
nodes which can still represent the topology of the input data.
These are at the beginning about 5% of M and then decreasing
to 1% of M as shown in Table 1. This method (Equation 3)
saturates N after k steps to avoid too many performance dips and
to force the network to a consistent distribution of the nodes in
R™. The other hyperparameters which are not listed in the table
are set to the default values from (Fritzke, 1995). Nevertheless, a
small increase of ¢max 1S necessary to keep the network error low
with the increasing amount of data.

Parameter Value Parameter Value
tmax 100...500 m 0.5...0.01
N M -(0.05...0.01) n2 0.05...0.001
M 500 A 350...500

Table 1. The hyperparameter set for the GNG algorithm. Some
of these hyperparameters are directly linked with the current scan
number k, the current training epoch ¢ and the size of the input
data M.

5.2 Experimental Results

The dataset for testing our NBV approach contains two different
objects. A Buddha statue (Figure 3, left side) with a rather sim-
ple surface geometry but still some concave parts and the popular
Stanford Dragon (Figure 3, right side) with a much more complex
object surface containing occluded and concave parts like regions
inside and outside the jaws. As mentioned earlier, the initial po-
sition and orientation of the sensor is set to a fixed value. We
assume that the sensor covers a substantial part of the object to
get some evaluable information to start with.

The results for the Buddha in both modes are provided in Table 2
(top). The first column displays the used mode and the target
point density per square meter which the object should have in
the end. FM (Fast Mode) is averaged over 20 runs. DM (Densify

Figure 3. The two test objects: On the left our Buddha statue,
scanned with a high resolution 3D scanner and meshed. On the
right, the Stanford Dragon meshed by (Rodola et al., 2013).

Buddha test object

Mode (puser) Cov dabs (] / O, | Fmax / Obias | Pove [p1/m°] | pmin [pts/m?]
FM (-) 99.97% | 0.209/0.138 10/3 85,076 15,321
DM (20,000) | 99.90% | 0.232/0.157 1172 91,638 23,430
DM (30,000) | 100% 0.237/0.156 1472 106,695 32,850
DM (40,000) 100% 0.226/0.153 17/1 129,171 43,515
Dragon test object

Mode (puser) Cov duvs [0] / Oy, | Kmax / Ok | Pave [P8/m%] | pin [pts/m?]
FM (-) 99.07% | 0.376/0.311 1172 105,576 15,989
DM (20,000) | 99.49% | 0.384/0.311 13/3 117,103 22,414
DM (30,000) | 99.20% | 0.399/0.319 1772 151,649 32,728
DM (40,000) | 99.68% | 0.392/0.318 20/1 177,497 42,766

Table 2. Results for the Buddha test object (top) and the Dragon
test object (bottom): the tables show the Ep and the minimal
point density pmin listed by the modes, for three different user
densities in the DM.

Mode) is averaged over 10 runs. The next four columns are the
evaluation parameters from Section 3.4. Provided that the theo-
retical maximum for coy is 100%, for daps is the lower the better
and for kmax also the lower the better. The average point den-
Sity pavg is calculated by Equation 8. In addition, we show the
standard deviation of knax to see the variance and the minimal
reached point density pmin Which have to be higher than pyser in
the DM. The same test was done for the Dragon object, the re-
sults are shown in Table 2 (bottom). The hyperparameters were
the same for both test objects.

For an expression how the result of a complete NBV finding pro-
cess looks like, Figure 4 shows exemplarily two final sensor con-
stellations after 14 scans (Buddha, top) and 17 scans (Dragon,
bottom) and the corresponding GNG model on the right side. For
visualizing possible gaps after a finished run, especially for an
operator, the color encoding in Figure 5 indicates the absolute
distance in different colors to show parts which are difficult to
acquire by the sensor, e.g. occluded parts, whereby every dis-
tance greater than 1 cm is treated as a gap and displayed in red.

5.2.1 Comparison to a naive uniform approach To see how
our approach performs in comparison to a different approach,
we choose a “naive random” approach based on uniformly dis-
tributed positions on a sphere and evaluate the approach in ex-
actly the same experiment as before with the same criteria. The
sensor positions were placed uniformly on a sphere around the
object. The barycenter of the object fell together with the sphere
center. The sphere positions are computed from an icosphere with
F5g (see Section 3.4 for details). This means, the upper limit of
kmax 1s 20, which is the same limit as for the FM and DM 20,000
and also DM 30,000. For DM 40,000, the upper limit is kmax =
25 but was not tested with the “naive random” approach. The ini-
tial position and orientation is the same as with our approach, but
then integrated in the sphere positions. To make the comparison
as fair as possible, after the initial sensor configuration, the next-
best-view is chosen randomly from the set of available positions
and the correct distance to the object is adjusted as the current
point density requires (see Equation 9). The results are averaged
over 10 runs and summarized in Table 3 for the Buddha and the
Dragon object.
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Figure 4. Sensor constellations after a finished run in DM (puser =
30,000) on the left and the corresponding GNG model on the
right side: result for the Buddha test object (top, kmax = 14) and
result for the Dragon test object (bottom, kmax = 17).

Buddha test object

Mode (puser) Cov davs [M] / Oy, | Kmax / Ok | Pave [PtS/M] | pimin [pts/mz]
FM (-) 99.81% | 0.225/0.150 9/2 80,573 12,138
DM (20,000) | 99.97% 0.208/0.144 14/2 113,061 22,773
DM (30,000) 100% 0.219/0.150 15/2 122,114 34,837
Dragon test object

Mode (puser) Cov davs [M] / Gay, | Kmax / Tk | Pave [Pt/m°] | pain [pts/m?]
FM (-) 99.52% 0.347/0.289 1172 103,023 16,910
DM (20,000) | 99.58% 0.316/0.287 15/2 154,946 26,509
DM (30,000) | 99.68% | 0.347/0.303 18/1 150,035 32,645

Table 3. Results for the Buddha test object (top) and the Dragon
test object (bottom) with the “naive random” approach: the tables
show the Ep and the minimal point density pmin listed by the
modes, for two different user densities in the DM.

6. DISCUSSION AND CONCLUSION

One of the main ideas behind our proposed method is the plan-
ning of the next-best-view based on an evaluation of the object
topology by finding low point density regions. This procedure
is compared with a naive random approach and gives reasonable
results which are discussed in this section.

A good impression is given in Figure 4 which shows the result
of a typical model (right side), build up only from the data. Also
small details are represented by at least one node to estimate the
point density in this region like small parts on the head of the
dragon. For objects with a simpler shape like the Buddha, the
sensor positions are placed almost uniformly around it, what is
a replicable step. If some positions are close to each other like
13/8 and 2/4 (Figure 4, left, top row), the desired point density
was not reached with the first scan in this area or a new part of
the object was discovered with a less dense area. If the object is
more complex, our algorithm places more scans near the critical
parts and thus tries to get the surface more dense. This behavior
is normal and can also be observed in Figure 4 (left, bottom row)
for the sensor positions 2/13/14/15.

The remaining gaps and less dense regions in the reconstructed
point cloud are shown in Figure 5. Red highlights the gaps, blue
and green are dense regions and yellow are less dense ones. The

$ 4

Figure 5. Absolute point-to-point distance encoded by different
colors between the reconstructed and reference point cloud for
each of the two test objects. All distances greater than 0.01m are
marked as gaps in the surface and highlighted in red. In addi-
tion to the color map, a histogram showing the distribution of the
distance values is provided.

Buddha in the top row was acquired with 14 scans and shows no
gaps at all. The Dragon below has two small gaps. One occluded
part on the side behind a hind feet and on inside the jaw. The
17 scans were still not enough, but these regions are very chal-
lenging for an automatic acquisition and would normally require
the intervention from an operator with empiric knowledge about
respective regions.

With the increasing number of scans, the point density increases
too, but not linearly and only locally. The average point den-
Sity pavg 18 not a reliable indicator for the complete object density
which can be clearly seen if the number of views and the reached
average point density in Tables 2 and 3 are compared. Especially
in Table 3 (bottom), it becomes clearly visible that payg is higher
with 15 scans in the second row as with 18 scans in the third row.
A look at the minimum point density pmin reveals the inconsis-
tency. A high coverage is an indicator for gaps, as also daps, the
point-to-mesh distance is. All of the results have a high coverage
near 100% which means that no essential part of the objects were
forgotten to scan. The point-to-mesh distance is difficult to inter-
pret, because it is nearly constant for a test object, smaller than
1 mm and the standard deviation has often the same magnitude.
Therefore, the coverage is much more intuitive to analyze.

If we first compare the two approaches among themselves sepa-
rately, an understandable trend is visible, depending on the test
object. The number of scans kmax increases with the required
point density and with the object complexity. This can be seen if
we compare the results of the Buddha and the Dragon from our
NBYV approach in Table 2. With the object complexity, the ob-
tained coverage decreases what explains the small gaps as shown
before in Figure 5. The coverage is not always consistent, but
we have to keep in mind that the result of a comparison between
two point clouds with several ten thousand points are mapped be-
tween 0 and 100. This distorts the result. Furthermore, the stan-
dard deviation of kmax is almost consistent and, with a higher pa-
rameter puser, the standard deviation decreases to one scan which
makes the approach more reasonable. Only for the Fast Mode
(FM), o,,, tends to be a little higher. The termination of FM
depends on the GNG network error which is an indicator for the
network stability. As displayed in Figure 6, the red line shows
the RMSE for a complete NBV Finding process at every train-
ing epoch ¢, the black line is the slope of the error, indicating the
change rate. With increasing k, the slope gets smaller and if the
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slope changes the sign, the FM stops, assuming a stable network
where most of the gaps in the object are closed. This is shown
in the top row in Figure 6. Note that both y-axes are in logarith-
mic scale. In the bottom row are the same graphics, shown for
the DM. The big spikes in the RMSE at the beginning of each
scan process are good indicators that the network gets new data
which covers a new part of the object. Newly inserted nodes and
older nodes have to move more to fit the new distribution. This
indicates that a large new undiscovered region of the object was
scanned and fed into the network.
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Figure 6. RMSE of the GNG network (red) and slope of the error
(black, inverse y-axis) for four different runs: FM (top row) with
Buddha (kmax = 10) on the left side and Dragon (kmax = 11) on
the right side. The same constellation is provided in the bottom
row, (kmax = 14 and 17) for DM with pyser = 30,000.

Finally, the results of our proposed method and the “naive ran-
dom” approach can be compared if we consider Table 3. Except
for the FM, our NBV method outperforms the “naive random”
approach in efficiency, i.e. our proposed method reaches the de-
sired minimum point density which is set by the user faster than
with uniformly distributed sensor positions. For 20,000 points
per square meter, about 20% earlier and for 30,000, about 10%
earlier. A possible explanation why the approach does not per-
form better in the FM then the “naive random” approach can be
the sensor positions. Since the goal is not a dense surface, uni-
formly distributed sensor positions around the object are likely
better for this case and lead to a faster stable network geometry.

The goal of this proposed work was not to find “optimal” sensor
positions and to define an absolute lower limit for kmax for a cer-
tain object. It was the maximization of the point density on the
surface of unknown objects. Beside this, it is almost impossible
to find always an “optimal” sensor configuration for every ob-
ject type without any prior knowledge, which finally leads to the
conclusion that the presented next-best-view method can neither
ensure a full model completeness nor that all gaps in the data are
closed. But with the focus on next-best-view positions for regions
with small point density, e.g. on the borders of the GNG network,
it is more likely that the surface of the object is complete and has
a certain local minimum point density while acquiring a lower
number of scans. To further increase the efficiency, more criteria
like the overlapping between scans and the accurate estimation
of the normal from complex object geometries are the next best
starting points for future work.
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