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ABSTRACT: 

 

Occurrence of non-recurrent traffic congestion hinders the economic activity of a city, as travellers could miss appointments or be late 

for work or important meetings. Similarly, for shippers, unexpected delays may disrupt just-in-time delivery and manufacturing 

processes, which could lose them payment. Consequently, research on non-recurrent congestion detection on urban road networks has 

recently gained attention. By analysing large amounts of traffic data collected on a daily basis, traffic operation centres can improve 

their methods to detect non-recurrent congestion rapidly and then revise their existing plans to mitigate its effects. Space-time clusters 

of high link journey time estimates correspond to non-recurrent congestion events. Existing research, however, has not considered the 

effect of travel demand on the effectiveness of non-recurrent congestion detection methods. Therefore, this paper investigates how 

travel demand affects detection of non-recurrent traffic congestion detection on urban road networks. Travel demand has been classified 

into three categories as low, normal and high. The experiments are carried out on London’s urban road network, and the results 

demonstrate the necessity to adjust the relative importance of the component evaluation criteria depending on the travel demand level. 

 

 

1. INTRODUCTION 

Traffic congestion is one of the most haunting issues of a 

developed urban environment as it has a substantial impact on 

society and nature (Beevers and Carslaw, 2005; Goodwin, 2004). 

Even though traffic congestion is intrinsically linked with the 

economic success of a city; no one would be willing to waste time 

and money due to a congestion event. In addition, urban road 

networks could barely increase traffic capacity by widening 

existing roads or building new roads due to the existing 

infrastructure. Even if the existing infrastructure allows for new 

developments, implementation of such solutions is usually cost 

prohibitive and requires elaborate planning. Consequently, 

improving traffic capacity is not a sustainable strategy to manage 

traffic congestion on the long term (National Research Council, 

1994).  

 

Urban road networks face with two main types of traffic 

congestion: recurrent and non-recurrent. Recurrent congestion 

exhibits a daily pattern and it is observed at morning or afternoon 

peak periods. Location and duration of a recurrent-congestion 

event is usually known by regular commuters and traffic 

operators. Excess travel demand, inadequate traffic capacity or 

poor signal control are the main reasons of recurrent congestion 

(Han and May, 1989). On the other hand, Non-Recurrent 

Congestion events (NRCs) are mainly caused by unexpected 

events like traffic accidents or vehicle breakdowns; and planned 

events like engineering works or special events such as football 

matches or concerts (FHWA, 2012; Kwon et al., 2006). An NRC 

event can occur at any time of day, and its location and duration 

usually depends on the travel demand, as well as the local 

conditions of the road network and traffic capacity. Amongst 
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these factors, focusing on travel demand is relatively more 

important, as traffic operation centres need to develop action 

plans based on the travel demand level.  

 

Variations in travel demand affect many important indicators 

such as travel time reliability, economic success of a city and the 

structuring of policies such as congestion charge (Yang and Bell, 

1997). There is a growing research interest to detect NRCs on an 

urban road networks; yet, the variation of travel demand on the 

effectiveness of such approaches has not been investigated so far 

(Anbaroğlu et al., 2015). Therefore, this paper aims to investigate 

how different travel demand levels affect the performance of 

NRC detection methods.  

  

2. LITERATURE REVIEW 

Understanding the formation and propagation of traffic 

congestion has taken the interest of researchers for decades. 

Previous studies on congestion detection have focused on 

motorways/freeways, which are not subject to interruptions due 

to traffic lights or pedestrian crossings. Uninterrupted traffic flow 

on motorways allowed scientists to develop physical models to 

explain the formation and development of traffic congestion as a 

‘cluster of densely moving vehicles’ (Kerner and Konhäuser, 

1994; Treiber et al., 2000). Investigation of the characteristics of 

traffic congestion on urban road networks remained a challenge 

due to difficulty in modelling irregular interruptions such as 

traffic lights.  

 

The advancement of sensor technology and communication 

networks allows traffic operation centres to collect vast amounts 
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of traffic data on a daily basis (Chang et al., 2004). Investigation 

of such rich datasets might eventually overcome the difficulties 

of analysing urban road networks (Geroliminis and Sun, 2011). 

A prominent example is the Link Journey Time (LJT) data, in 

which an LJT is an approximation of the journey time through a 

link at an established time interval. Traffic operation centres 

often rely on LJTs to assess network performance, due to its 

suitability for network-wide analysis (Hall, 2001). Estimation of 

an LJT requires the calculation of a vehicle’s travel time through 

a link, which is obtained by matching the readings of automatic 

number plate recognition cameras (Robinson and Polak, 2006).  

 

Modelling the statistical distribution of LJTs has been an 

attractive research area for decades due to its linkage with travel 

time reliability (Hollander and Liu, 2008; Wardrop, 1952). 

However, what is meant by “distribution of travel time” might 

vary depending on the context. For example, Arezoumandi 

(2011) and Susilawati et al. (2011) attempt to find a distribution 

to characterise the travel times on a link, regardless of the 

temporal variations within a day. On the other hand, Polus (1979) 

considers two time periods (i.e. to and from work trips). 

Secondly, different road characteristics may result in different 

outcomes. For example, link lengths have shown a distinctive 

effect (e.g. making the distribution bimodal) on the distribution 

of travel times (Susilawati et al., 2011). Furthermore, only few 

studies mention the data cleaning procedure, which might have a 

substantial impact on the distribution of LJTs (Anbaroğlu et al., 

2015).  

 

Investigating the linkage between travel demand and LJTs is also 

an exciting research endeavour (Gronau, 1970). Commuters 

usually aim to reduce their travel times as well as improve the 

predictability of their journeys –both of which directly relate to 

travel demand (Carrion and Levinson, 2012). For instance, the 

occurrence of a tube strike would increase the demand for ground 

transportation modes, which in turn increase the LJTs (Moylan et 

al., 2016; Tsapakis et al., 2013). Understanding how the road 

network would operate under unusually high travel demand 

levels would be useful when developing contingency plans. 

Similarly, a thorough understanding of travel times for low travel 

demand levels is also necessary when time-critical operations 

(e.g. ambulance dispatch) are to be assessed (Schmid and 

Doerner, 2010).  

 

3. SPACE-TIME CLUSTERING TO DETECT NRCS 

This paper builds upon the two recent NRC detection methods as 

described in Anbaroğlu et al. (2015). These methods aim to 

capture the heterogeneous nature of an urban road network, due 

to variations in link lengths and data quality, by modelling link 

journey time estimates with a lognormal distribution. Percentile 

based NRC detection relies on the percentile values of the 

estimated LJTs to detect NRCs. Space-time scan statistics 

(STSS) based NRC detection relies on a statistical model to 

detect statistically significant clusters of high LJTs. 

 

The developed methodology relies on several inputs. Adjacency 

matrix (M) is a binary matrix defining the connectivity of the 

links. Congestion factor (c) is a real-valued number multiplied 

with the expected LJTs to determine the threshold to identify 

whether an LJT is excessive. Last, NRCs are detected on a given 

date of analysis.  

 

3.1 Percentile based NRC Detection 

A percentile is a measure indicating the value below which a 

given percentage of observations in a group of observations fall. 

For example, the 95th percentile of an LJT would indicate that the 

95% of the estimated LJTs are indeed below that value. There are 

different ways to calculate a given percentile value. In this paper, 

we rely on the percent point function method, as it considers the 

statistical distribution of LJTs (Pu, 2011). Consequently, the 

percentiles of an estimated LJT are determined as shown in 

equation (1).  

 

 𝐺(𝑝) = exp(𝜇 + 𝜎Φ−1(𝑝)) (1) 

 

where p is the cumulative probability, Φ−1(𝑝) is the percent 

point function of the standard normal distribution function, μ and 

σ are the mean and standard deviation of the underlying normal 

distribution, respectively. The value of Φ−1(𝑝) could be obtained 

easily given p. For example, when p = 0.5, Φ−1(𝑝) would be 

zero; hence, G(0.5) = exp(μ), which is the median of the 

lognormal distribution. 

 

The aforementioned process to calculate the πth percentile value 

(π = 100p) of an LJT is conducted for all a ∈ A and t ∈ {1, 2, ... , 

T}, where A and T denote the set of links and the total number of 

LJTs within the analysis interval respectively. Specifically, G(p) 

is calculated for |A|.T times for a given value of π. Thereon, an 

estimated LJT on link a time interval t, 𝑦𝑎(𝑡), is considered to 

belong to an NRC if it is greater than its πth percentile value. 

Formally, 𝑦𝑎(𝑡) belongs to an NRC if 𝑦𝑎(𝑡) >  𝑦𝑎
𝜋(𝑡), where 

𝑦𝑎
𝜋(𝑡) denotes the πth percentile value of link a at time interval t. 

 

Those LJTs that are higher than their πth percentile values and 

spatio-temporally overlap with each other are clustered to detect 

NRCs. Two LJTs spatio-temporally overlap with each other if 

they either occur on the same link at adjacent time intervals (i.e. 

𝑦𝑎(𝑡) and 𝑦𝑎(𝑡 + 1)) or occur on adjacent links at the same time 

interval (i.e. 𝑦𝑎(𝑡) and 𝑦𝑏(𝑡), where 𝐌(𝑎, 𝑏) = 1). This 

procedure of clustering spatio-temporally overlapping LJTs is 

repeated until all the LJTs that are higher than their πth percentile 

value are included within an NRC. 

 

3.2 STSS based NRC Detection 

Space-time scan statistics (STSS) is a state-of-the-art cluster 

detection method (Patil and Taillie, 2004). This statistical method 

is modified for the purpose of NRC detection, and consists of four 

steps (Anbaroğlu et al., 2015). First, space–time regions (STRs) 

are generated which requires two inputs: maximum spatial 

window size (ρ) and maximum temporal window size (τ). 

Second, the likelihood ratio function (Ƒ) is determined by 

considering the distribution of LJTs. The whole analysis period 

is scanned with overlapping STRs and their likelihood ratio 

scores are calculated. Third, significant STRs are determined by 

comparing the likelihood ratio scores of the observed data with 

the ones obtained from the replications. Finally, significant STRs 

are clustered to detect NRCs. 

 

A space-time region (STR) is the aggregation of spatial regions 

in time, where links correspond to the spatial regions. An NRC 

may span several links and its duration cannot be known a prior. 

In order to detect any NRC regardless of the number of links that 

it contains or its duration, it is necessary to scan an entire study 

area with overlapping STRs whose size and location varies. To 

generate all possible STRs, two parameters should be 

determined: maximum spatial window size (ρ) and maximum 

temporal window size (τ). However, scanning a large spatial area 

containing hundreds of regions is computationally unfeasible 

(Neill and Moore, 2004). Therefore, it is necessary to reduce the 

number of STRs and this is accomplished with the following two 

adjustments. First, only those STRs whose individual LJTs are 
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excessive are evaluated. Second, spatial regions are created by 

only considering the link itself and its first-order adjacencies.  

 

The likelihood ratio function of an STR s whose individual LJTs 

are lognormally distributed is stated in equation (2) (Anbaroğlu 

et al., 2015).  

 

 

Ƒ(𝑠) = {
exp (

𝛼2

2𝛽
) , if ∑ (ln(𝑦𝑎(𝑡)) − 𝜇𝑎,𝑡)

𝑎,𝑡 ∈ 𝑠

> 0

1, otherwise

 (2) 

 

where, 𝛼 =  ∑
𝑙𝑛(𝑦𝑎(𝑡))−𝜇𝑎,𝑡

σ𝑎,𝑡
2𝑎,𝑡  ∈ 𝑠  , and 𝛽 =  ∑

1

σ𝑎,𝑡
2𝑎,𝑡  ∈ 𝑠 . 

The likelihood ratio values are calculated for each s ∈ STR, 

where STR denotes the set of all STRs. 

 

The third step, determining significant STRs, requires a number 

of replications of the dataset. The replications are generated 

based on the null hypothesis that no NRC had occurred during 

the analysis period. Each LJT is replicated based on its 

distribution. Having obtained the replications, STRs are used to 

scan these replications and their likelihood ratio scores are 

obtained. The highest likelihood ratio score of each replication is 

recorded. Finally, the observed likelihood ratio scores are 

compared with the distribution of highest likelihood ratio scores 

of the replications to determine significant STRs.  

 

The last step of STSS based NRC detection is the clustering of 

significant STRs. When generating STRs only the link itself and 

its first-order adjacencies are considered; however, an NRC may 

span many links. In order to detect such NRCs, spatio-temporally 

overlapping significant STRs are clustered. Clustering significant 

STRs has a similar procedure to the one described in Percentile 

based NRC detection. This is because an STR is a group of LJTs, 

and all the LJTs that belong to a statistically significant STR are 

considered to belong to an NRC. Thereon, spatio-temporally 

overlapping LJTs could be clustered to detect NRCs. 

 

3.3 Evaluation of NRC Detection Methods 

Both of the NRC detection methods would detect a number of 

NRCs, but the detected NRCs would be different depending on 

the method and its parameters. For example, different π values in 

Percentile based NRC detection would lead to different NRCs. 

Similarly, different maximum spatial and temporal window size 

values in STSS would lead to, again, different NRCs. The main 

issue is to determine, which one of these different outcomes 

resemble the reality the most.  

 

A conceivable way would be to compare the detected NRCs with 

the real NRCs, and assess to what extent they match with each 

other. However, knowing the true spatial and temporal extent of 

all NRCs, even for a single day, govern remarkable challenges. 

Therefore, two complementary evaluation criteria have been 

proposed: high-confidence episodes and the Localisation Index 

(Anbaroglu et al., 2014).   

 

A ‘high-confidence’ episode is an NRC event on a link that lasts 

for a minimum duration during which all LJTs are excessive. The 

detected NRCs are compared with respect to the high-confidence 

episodes to obtain two measures. False Alarm Rate (FAR) is the 

proportion of all LJTs that are enclosed within an NRC but a 

high-confidence episode to all LJTs enclosed by the NRCs. False 

Negative Rate (FNR) is the proportion of all LJTs that are 

enclosed within a high-confidence episode but the detected NRCs 

to all LJTs enclosed by the high-confidence episodes. Of these 

two measures, FNR is the critical one as it determines the 

proportion of missed high-confidence episodes.  

 

The Localisation Index (LI) assesses to what extent an NRC 

detection method considered day-to-day variations in traffic to 

belong to an NRC. For example, a liberal NRC detection method 

may be very good at detecting high-confidence episodes; 

however, it may also lead to detecting large NRCs that do not 

necessarily represent the reality. In order to penalise such liberal 

methods, an NRC detection method should be able to produce 

compact NRCs. In this way, the detected NRCs could be 

associated with real-life events, such as incidents or engineering 

works. The ‘Localisation Index’ is an evaluation criterion that 

quantifies the extent to which the detected NRCs consist of link 

groups that are adjacent throughout their life-time. If only a 

single link group (i.e. a number of links all of which form a single 

connected component) occurs through-out the life time of an 

NRC, then its LI value would be one, which is the best score for 

LI. This step is repeated for all the detected NRCs, and the 

highest LI value would be the LI of the model.  

 

Once the FNR and LI are determined; these complementary 

criteria has to be combined into one so that a researcher could 

decide on the best performing NRC detection model. Multi-

Attribute Decision Making (MADM) provides the necessary 

theoretical background to perform this task. There are many 

methods of MADM; however, in this paper we rely on the 

Weighted Product Model (WPM) to combine the two criteria into 

a single measure (Triantaphyllou and Mann, 1989). The main 

advantage of WPM amongst others is that it is not effected by 

rank-reversals, which is a serious issue of most of the MADM 

methods. In this way, we could better interpret the advantages 

and disadvantages of different NRC detection methods, as the 

ranking of models will not change even if a new model is 

included. The Final Score (FS) of WPM is calculated as shown 

in equation (3). 

 

FS(𝑆𝐾, 𝑆𝐿) = ∏ (𝑆𝐾𝑗 𝑆𝐿𝑗⁄ )
𝑤𝑗

𝑗 ∈ {𝑒∗,LI}

, where ∑ 𝑤𝑗

𝑗

= 1  (3) 

 

where 𝑆𝐾  and 𝑆𝐿 are the two NRC detection models and j denotes 

a criterion which can be either the FNR in high-confidence 

episodes (𝑒∗) or the LI. 𝑆𝐾𝑗 and 𝑆𝐿𝑗 denote the values of the jth 

criterion of Kth and Lth NRC detection models respectively, and 

𝑤𝑗  is the weight (i.e. the relative importance) of criterion j. 

Having determined all Final Score values, the best model is the 

one that has the smallest Final Score, because the smaller the 

values of both of the criteria, 𝑒∗ and the LI, the better the NRC 

detection model. Once all NRC detection models are compared 

with one another, they can be ranked based on their Final Score 

values. 

4. RESULTS 

The proposed NRC detection methodology has been applied to 

London’s urban road network. The road network consists of 424 

links and LJTs are estimated every five minutes. The analysis has 

been conducted between 07:00 and 19:00, as this time interval 

covers the AM/Inter/PM peak periods in London (TfL, 2010). 

Therefore, for a given link there would be 145 LJTs (12 hr × 12 

LJTs/hour + 1, since the analysis period is inclusive of 07:00 and 

19:00). 

 

The investigation is carried out on three different travel demand 

levels, bank holidays, normal days and tube strikes corresponding 

to low, normal and high travel demand for the year 2010. The 

days that are included within these travel demand levels are 

illustrated in Table 1.  
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Bank 

Holidays 

(Low) 

1 January , 2 April, 5 April, 3 May, 31 May, 

30 August,    27 December, 28 December. 

Normal Days 

(Normal) 

Weekdays of October except 4 October on 

which a tube strike occurred. 

Tube Strikes 

(High) 

7 September, 4 October, 3 November, 29 

November. 

Table 1. The investigated days on three different demand levels 

Traffic operators commonly use expected LJTs for road network 

performance monitoring. This paper uses the expected LJTs that 

are used in Transport for London (TfL). In this way, there would 

be consistency between our analysis and the practice. As 

aforementioned, running an unmodified STSS model is a cost-

prohibitive in terms of computational time. Therefore, this paper 

considers only excessive LJTs, which are 20% higher than their 

expected values (i.e. c = 1.2). The main reason for us to rely on 

such excessive LJTs is the practical guidelines, in which TfL 

considers a link to have ‘minimal congestion’ whenever 

estimated LJTs are 20% higher than their expected values  (TfL, 

2010). 

 

The other parameters of STSS based NRC detection are; the 

maximum spatial (ρ) and temporal window sizes (τ). The 

maximum spatial window size is varied between one and three; 

as our empirical analysis suggest that the combined effect of links 

do not have a substantial effect on the detected NRCs for STRs 

containing three or more adjacent links. The maximum temporal 

window size is varied between one and six, as 30 minutes is 

sufficiently long enough for an NRC to develop. Number of 

replications is decided to be 99, so that the lowest p-value would 

be 0.01. The significance level is determined to be 0.05, so that 

whenever the p-value of an STR is less than 0.05 it would be 

considered to be significant. On the other hand, the only 

parameter of Percentile based NRC detection, π, is varied 

between 75 and 95, as this range would correspond to the 

unusually high LJTs (Anbaroğlu et al., 2015).  

 

In order to provide a better understanding of the NRC detection 

methods, the boxplot of LI values for different models are 

illustrated in Figure 1 for low and high travel demand levels (i.e. 

bank holidays and tube strikes respectively). The boxplot is 

shown in log-scale in order to improve the legibility of the results. 

 

The common outcome is that STSS models are more 

conservative in detecting NRCs; hence, resulted in better 

performance regarding the LI. The lower the spatial and temporal 

window sizes, the more conservative STSS models become. The 

results also suggest to liberalise an STSS model by increasing its 

temporal window size rather than spatial window size. As an 

expected outcome, as the π value in Percentile based NRC 

detection increases the method becomes more conservative, since 

the 𝑝(𝑦𝑎(𝑡) >  𝑦𝑎
𝜋(𝑡)) would decrease. 

 

 

 
(a) 

 
(b) 

Figure 1. Variations of Localisation Index values of different 

NRC detection models on bank holidays (a) and tube strikes (b) 

On the other hand, STSS based NRC detection performs poorer 

with respect to the detection of high-confidence episodes. For 

London’s urban road network, empirical analyses demonstrate 

that a high-confidence episode occurs whenever the estimated 

LJTs are at least 40% higher than their expected values for at least 

a minimum duration of 25 minutes (Anbaroglu et al., 2014). 

These outcomes adds further support to the analyses conducted 

for normal travel demand, that the STSS based NRC detection is 

more conservative in detecting NRCs compared to Percentile 

based NRC detection (Anbaroğlu et al., 2015). 

 

These two complementary, and also conflicting, criteria should 

be combined into a single measure to determine the best 

performing model. This is accomplished, as discussed in 

subsection 3.3, by relying on WPM. By assuming equal weighs 

for the evaluation criterion (i.e. 𝑤𝑒∗ = 𝑤LI = 0.5 ), the average of 

final scores are calculated for each demand level and illustrated 

in Figure 2. The results demonstrate that demand level, indeed, is 

an important factor that needs to be considered when developing 

NRC detection methods. First, the most conservative model of 

Percentile based NRC detection method (π = 95) is favoured for 

normal travel demand; yet, the most liberal model (π = 75) is 

favoured for low and high travel demand levels. Second, 

liberalising STSS models by increasing temporal window size is 

usually better compared to increasing spatial window size. 

Nevertheless, the most interesting outcome is the negative 

correlation of Percentile based NRC detection models with 

respect to travel demand. For normal travel demand, conservative 

models are preferred. On the other hand, liberal models are in 

favour for low and high travel demands. The main reason for this 

outcome is that liberal models perform better with respect to 

detecting high-confidence episodes resulting in very low FNR 

values.  

 

Percentile Models
π = 75, 80, 85, 90, 95

STSS Models
τ = 1      τ = 2      τ = 3      τ = 4     τ = 5 τ = 6   
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Figure 2. Average of Final Score values of different NRC 

detection models on different travel demand levels assuming 

equal weights for the evaluation criteria 

In order to have a better understanding of the effect of detecting 

high-confidence episodes on the final scores, we have reported 

the best performing Percentile and STSS based NRC detection 

models for different 𝑤𝑒∗ values ranging from 0.3 to 0.7. The 

results of this analysis is shown in Table 2. The best performing 

models and their Final Score (FS) values are highlighted in bold. 

 

𝒘𝒆∗    Low Normal High 

 π STSS π STSS π STSS 

0.30 Model 80 τ = 6; 

ρ = 1 

95 τ = 1; 

ρ = 1 

75 τ = 1; 

ρ = 1 

FS 0.98 1.01 0.41 0.3 1 0.39 

0.35 Model 75 τ = 6; 

ρ = 1 

95 τ = 1; 

ρ = 1 

75 τ = 1; 

ρ = 1 

FS 1 1.14 0.48 0.39 1 0.54 

0.40 Model 75 τ = 6; 

ρ = 1 

95 τ = 6; 

ρ = 1 

75 τ = 1; 

ρ = 1 

FS 1 1.28 0.57 0.49 1 0.74 

0.45 Model 75 τ = 6; 

ρ = 1 

95 τ = 6; 

ρ = 1 

75 τ = 4; 

ρ = 1 

FS 1 1.44 0.68 0.61 1 0.96 

0.50 Model 75 τ = 6; 

ρ = 1 

95 τ = 6; 

ρ = 1 

75 τ = 4; 

ρ = 1 

FS 1 1.63 0.81 0.75 1 1.21 

0.55 Model 75 τ = 6; 

ρ = 1 

95 τ = 6; 

ρ = 1 

75 τ = 4; 

ρ = 1 

FS 1 1.83 0.96 0.91 1 1.53 

0.60 Model 75 τ = 6; 

ρ = 1 
75 τ = 6; 

ρ = 1 
75 τ = 6; 

ρ = 3 

FS 1 2.06 1 1.12 1 1.84 

0.65 Model 75 τ = 6; 

ρ = 2 
75 τ = 6; 

ρ = 3 
75 τ = 6; 

ρ = 3 

FS 1 2.31 1 1.33 1 2.06 

0.70 Model 75 τ = 6; 

ρ = 3 
75 τ = 6; 

ρ = 3 
75 τ = 6; 

ρ = 3 

FS 1 2.56 1 1.58 1 2.3 

Table 2. The effect of the relative importance of FNR values on 

the best performing NRC models on different travel demand 

levels 

The results add further support to the importance of considering 

travel demand while developing NRC detection methods. For 

holidays, due to the low travel demand, the NRCs are much more 

compact leading to lower LI values. Therefore, the emphasis is 

on detecting high-confidence episodes; hence, liberal models are 

preferred. Actually, only when we consider the lowest 𝑤𝑒∗ value, 

the best performing model is the second most liberal NRC 

detection model (i.e. π = 80). In the remaining cases the best 

performing model is indeed the most liberal model. The previous 

outcome regarding the advantage of liberalising an STSS model 

by increasing its temporal window size is yet again supported. 

Only when the 𝑤𝑒∗  is increased to 0.65, it became inevitable to 

further liberalise the method by increasing the spatial window 

size.  

 

For normal travel demand, it seems that STSS is favoured when 

the evaluation criteria are weighted equally. However, there is a 

shift in the preference of both method and model, once the 𝑤𝑒∗ is 

increased from 0.55 to 0.60. In the former case, the most 

conservative Percentile model is preferred (i.e. π = 95); yet the 

best performing model is an STSS model (i.e. τ = 6, ρ = 1). 

Whereas in the latter case the most liberal model (i.e. π = 75) is 

the best model.  

 

For high travel demand, STSS models show their true advantage 

for lower values of 𝑤𝑒∗. The difference between the FS values 

are the highest in terms of ratio when 𝑤𝑒∗= 0.30. This is because, 

liberal models perform so poorly with respect to the LI due to 

their tendency to consider even the slightest increment in LJTs to 

belong to an NRC. In such high travel demand situations; 

however, the traffic operation centres might want to localise the 

spatial sources of congestion in order to develop effective 

contingency plans. Consequently, conservative models could be 

favoured in such high demand situations.   

  

5. DISCUSSION AND CONCLUSIONS 

The advancement of sensor technology allowed traffic specialists 

to collect and analyse large amounts of traffic data on a daily 

basis. Successful applications range from dynamic traffic light 

control to rapid incident detection to journey time estimation. 

Accurate detection of NRCs is becoming an emerging research 

direction within this context, as timely detection of such 

unexpected events could reduce the overall negative effect.  

 

Previous research efforts on NRC detection have not considered 

the impact of travel demand on the overall performance of the 

methods. This paper demonstrated that travel demand has a 

substantial effect on the performance of the methods. Even 

though liberal NRC detection models are in favour for low travel 

demand, this paper demonstrates that increasing travel demand 

might necessitate favouring the LI criterion in order to pinpoint 

the source of NRC.  

 

The current research could be extended in several research 

directions. First is the necessity to develop further evaluation 

criteria, as the FNR values could be very close to zero in liberal 

NRC detection models, which may then compromise the 

calculation of Final Score values. Second, the theory of STSS 

based NRC detection models could be improved to consider 

spatial-temporal correlations within the estimated LJTs. Last, 

further exploration of novel NRC detection models are necessary 

that would incorporate real-life issues such as missing data. 
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