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ABSTRACT: 

Assessing and monitoring water quality status through timely, cost effective and accurate manner is of fundamental importance for 

numerous environmental management and policy making purposes. Therefore, there is a current need for validated methodologies 

which can effectively exploit, in an unsupervised way, the enormous amount of earth observation imaging datasets from various 

high-resolution satellite multispectral sensors. To this end, many research efforts are based on building concrete relationships and 

empirical algorithms from concurrent satellite and in-situ data collection campaigns. We have experimented with Landsat 7 and 

Landsat 8 multi-temporal satellite data, coupled with hyperspectral data from a field spectroradiometer and in-situ ground truth data 

with several physico-chemical and other key monitoring indicators. All available datasets, covering a 4 years period, in our case 

study Lake Karla in Greece, were processed and fused under a quantitative evaluation framework. The performed comprehensive 

analysis posed certain questions regarding the applicability of single empirical models across multi-temporal, multi-sensor datasets 

towards the accurate prediction of key water quality indicators for shallow inland systems. Single linear regression models didn’t 

establish concrete relations across multi-temporal, multi-sensor observations. Moreover, the shallower parts of the inland system 

followed, in accordance with the literature, different regression patterns. Landsat 7 and 8 resulted in quite promising results 

indicating that from the recreation of the lake and onward consistent per-sensor, per-depth prediction models can be successfully 

established. The highest rates were for chl-a (r2=89.80%), dissolved oxygen (r2=88.53%), conductivity (r2=88.18%), ammonium 

(r2=87.2%) and pH (r2=86.35%), while the total phosphorus (r2=70.55%) and nitrates (r2=55.50%) resulted in lower correlation 

rates. 

1. INTRODUCTION

Water quality is a fundamental aspect of global freshwater 

resources. Information about water quality is needed to assess 

baseline conditions and to understand trend for water resource 

management. Therefore, the importance of evaluating and 

monitoring water quality in terrestrial reservoirs is clear and 

self-evident. The most commonly used methodology to examine 

the quality of water is through in-situ sampling and chemical 

analysis. In-situ sampling lead to accurate estimations but lacks 

in several other areas. More specifically: 

- In-situ measurements fail to provide the spatial distribution of 

a phenomenon throughout the water body, since the results 

correspond to the exact location/region from which the sample 

was taken. 

- Water bodies are usually inaccessible on a regular basis. 

- In many cases, monitoring one, let alone tens or hundreds of 

lakes in a region, is a prohibitive process, both financially and 

logistically. 

- The location of the sampling regions usually is not correlated 

with any phenomena, sensitive regions or management 

practices. 

- Comprehensive monitoring of any crucial phenomena requires 

a frequent sampling. 

To this end, the main advantage of remote sensing technology 

provides the capability and the required information on a 

regular basis. Moreover, it provides the means for exploiting 

information from dates that in-situ sampling was not conducted 

(Dekker, Vos, & Peters, 2002, Zheng, Z., Yuanling, 2011). In 

particular, monitoring the good environmental status through 

earth observation data is not new but among the first objectives 

of remote sensing data exploitation (Wrigley and Horne, 1974). 

Natural inland waters are optically complex due to the 

interaction of three main parameters, namely chlorophyll, 

inorganic suspended solids and dissolved organic matter. The 

estimation of water concentrations in sensitive shallow systems 

through the use of multispectral remote sensing imagery can be 

hindered due to possible errors in consistent correlation. The 

optical complexity poses many challenges to the accurate 

retrieval of biogeochemical parameters. The depth of the lake 

and the aquatic vegetation levels is of significant importance. 

Many standard chlorophyll-a retrieval algorithms, which are 

optically dominated by phytoplankton and their breakdown 

products, tend to fail when applied to more turbid inland and 

coastal waters whose optically properties are strongly 

influenced by non-covarying concentrations of non-algal 

particles and coloured dissolved organic matter (Huang et al., 

2015; Palmer et al., 2015; Sass, et al., 2007). 

The advent of new generation satellite optical sensors like US 

Landsat-8 and the upcoming EU Sentinel-2 provides 

opportunities for developing satellite-based operational 

monitoring geospatial services globally. However, there are 

certain challenges regarding the limitations, operational 

feasibility, inter-calibration between the different sensors and 

the standardization of procedures for delivering accurate 
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geospatial value-add maps regarding the good environmental 

statuts of inland systems.  

The establishment of relations between in-situ ground truth and 

earth observation data is usually based on three approaches 

(Duan and Bastiaanssen, 2015; Giardino et al. 2007, Chen et 

al. 2008, Alparslan et al., 2007, Hellweger et al, 2007, Tyler et 

al., 2006, Han et al., 2005, Vincent et al, 2004; Young et al., 

2011): 

- empirical algorithms, which is based on the creation of a 

regression models using satellite imagery and water quality 

parameters, 

- semi-empirical approach, which embodies the use of spectral 

water quality characteristics in the statistical analysis, 

- analytical approach, in which key water quality parameters are 

related to inherent optical properties and therefore to apparent 

optical properties and top-of-atmosphere radiance. 

In this study, we have experimented with multi-temporal 

Landsat 7 and Landsat 8 high resolution satellite data, coupled 

with the corresponding hyperspectral data from a field 

spectroradiometer and in-situ ground truth data with several 

physico-chemical and key monitoring indicators. All available 

datasets, covering a 4 years period were processed and fused 

under a quantitative evaluation framework. The performed 

comprehensive analysis posed certain questions regarding the 

applicability of single empirical models across multi-temporal, 

multi-sensor datasets towards the accurate prediction of key 

water quality indicators for shallow inland systems. Landsat 7 

and 8 resulted in quite promising results indicating that from the 

recreation of the lake and onward concreate per-sensor, per-

depth prediction models can be successfully established.  

2. MATERIALS AND METHODS

2.1. Study Area 

The study area is located in Greece, on the southeast of Larissa, 

near the northern slopes of Pelion (Figure 1). It was completely 

desiccated in 1962 as part of a plan to address the flooding of 

the surrounding areas and to create new agricultural land. In 

2010 it was recreated in order to compensate the profound 

consequences on the local ecosystem and it now occupies an 

area of 42.000 acres. It is characterized as shallow and 

eutrophic while it is constantly pressured by land use changes, 

hydrological flow modifications and excessive chemical 

enrichment (Chamoglou et al. 2014).   

The protection, conservation and management of the site was 

undertaken by the Management Body of Ecodevelopment Area 

of Karla – Mavrovouni – Kefalovriso – Velestino 

(E.A.Ka.Ma.Ke.Ve.) which was established in 2003 and 

conducted frequent water quality sampling until 2013. 

2.2. Multi-temporal Remote Sensing Data and Field 

Campaigns 

Multitemporal high resolution satellite data were collected from 

the recreation of the Lake and onward. In particular, Landsat 7 

(L7) and Landsat 8 (L8) data were acquired. Landsat 7 consists 

of seven spectral bands, from 0.45 to 2.35 micrometers, with 

spectral resolutions of 0.06-0.20 micrometers and spatial 

resolution of 30 meters for Bands 1 to 5 and 7. The thermal 

infrared band has a 60 meter pixel and wavelengths of 10.40-

12.50μm. However, the Lake Karla region is heavily affected by 

the presence of gaps (approximately 20% of image pixels) in all 

the corresponding L7 paths and rows (Figure 1). The problem is 

caused by the early failure of the Scan Line Corrector which 

compensates for the forward motion of the satellite. In addition, 

Landsat 8 OLI consists of seven spectral bands with 

wavelengths from 0.43-2.29μm, spectral resolution from 0.02-

0.18μm and spatial resolution of 30m.  

In-situ ground-truth sampling data were systematically collected 

from 2011 an onward from the lake’s Management Body. 

Among the various field and lab sensors and instruments, the 

Hach’s HQ40d Portable Multi-Parameter Meter carried out the 

measurements of the physicochemical parameters, while the 

quantitative determination of water’s inorganic nutrient 

compounds and chlorophyll-a’s concentration was performed 

by applying different determination protocol for each 

compound, based on standard methods (APHA, 1998) and 

using the spectrophotometer HACH DR / 3900 (Chamoglou et 

al. 2014). In-situ hyperspectral reflectance observations were, 

also, acquired using the GER 1500 (Spectra Vista Corporation, 

US) portable spectroradiometer which provides spectra with 

512 spectral bands distributed in the spectral region from 

350nm to 1050nm with 3.2 nm FWHM. The location of every 

measurement, which was the same with the sampling positions, 

was recorded using a portable GPS.  

This study is focused mainly on the long term monitoring of the 

following parameters: chlorophyll-a (mg/lt), NO3 (mg/lt), NH4 

(mg/lt), Total Phosphorus (mg/lt), pH, conductivity (mS/cm), 

Dissolved Oxygen and temperature (Co). Chlorophyll-a (Chla) 

is a biological parameter and the necessary pigments used by 

most photosynthetic organisms for the release of chemical 

energy. When in vivo form, it exhibits two main absorption 

maxima positioned at 433nm (blue) and 686 nm (red) of the 

spectrum (Hunter et al. 2008). The concentration of chl-a is 

used as an indicator for the description of bioproduction and is 

linearly related to the biomass, the age of algae communities 

etc. (Thiemann, et al., 2000). 

Dissolved Oxygen (D.O.) is an important physical and chemical 

parameter which is used by most organisms for respiration and 

oxidation of organic substances. It primarily originates in the 

water from the atmosphere, through the phenomenon of 

diffusion, and secondarily due to the photosynthesis of aquatic 

flora. It has a seasonal and daily circle. PH is a physico-

chemical parameter expressing the negative decimal logarithm 

of the hydrogen ion, in particular of hydronium (H3O+) in a 

solution. As most aquatic organisms survive in a relatively 

small pH range, the parameter is an indicator of the existence of 

life. 

Conductivity is physico-chemical parameter that expresses the 

ability of the water body to allow the passage of electric current, 

and gives the total content of water in minerals. Conductivity 

values are influenced by ion concentration, mobility and electric 

charge, as well as water temperature. Total Phosphorus (TP) is 

the sum of the organic and inorganic phosphorus, dissolved or 

in the form of particles. It is affected by temperature, pH, nitrate 

and ammonium ions etc. and is usually the limiting factor of 

primary production, thus of utmost importance for the 

restoration of the ecological balance of a lake. Finally, nitrates 

(NO3) and ammonium (NH4) are an inorganic chemical 

parameter and one of nitrogen’s forms in the aquatic 

environment. Their concentration plays a decisive role in the 

trophic state of the lake. 
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2.3. Pre-processing Procedures and Multitemporal 

Reflectance 

Radiometric and atmospheric corrections were performed on the 

satellite imagery towards the elimination of solar illumination, 

atmospheric and terrain effects. Digital numbers were converted 

to top-of-atmosphere reflectance using the absolute radiometric 

calibration factors and effective bandwidths for each band. 

Atmospheric correction was then conducted through ATCOR2 

and MODTRAN4 for calculating a radiative transfer model for 

atmospheric transmittance, direct and diffuse solar flux, and 

path radiance. Several parameters were employed like the 

aerosol model, as well as satellite and sun geometry information 

including the satellite inclination, sun azimuth and zenith.  

2.4. Relationships between Reflectance and Concentrations 

Several empirical regression models were evaluated in order to 

study and establish consistent relationships between the 

concentrations of the water quality parameters and the satellite 

reflectance values. 

Several experiments were performed in order to evaluate the 

potential of establishing relationships between multi-temporal 

and multi-sensor data. The time difference between the 

sampling date and the acquisition of the satellite image was up 

to three days maximum. Three models were developed and 

evaluated. One containing in-situ sampling locations from the 

relatively deep parts of the lake, the second containing sampling 

data from the very shallow parts of the lake and the third 

including all in-situ sampling data from all lake depths. From 

every model, linear regression equations were computed for 

about 140 combinations of Landsat 8 spectral bands and for 

about 120 combinations of Landsat 7 spectral.  

Moreover, concurrent reflectance hyperspectral data from a 

field spectroradiometer were calculated. These observations 

were, also, correlated with both the in-situ ground truth and the 

satellite images. About 120 band ratios and indices were 

computed and tested.  

The overall analysis and comprehensive evaluation posed 

certain questions regarding the applicability of single empirical 

models across multi-temporal, multi-sensor datasets. In 

accordance with the literature, in all cases there wasn’t a single 

linear regression model which could establish concrete relations 

across multi-temporal, multi-sensor datasets. In particular, only 

the first model managed to provide high correlations for several 

water quality indicators for such a shallow and sensitive inland 

system. The shallower parts of the inland system followed 

different regression patterns, however a consistent empirical 

model couldn’t be established. 

On the contrary, the first model provided quite promising 

results for most of the examined water quality indicators. The 

highest correlation rates regarding the hyperspectral reflectance 

from the field spectroradiometer were for chl-a (r2=97.6%), 

ammonium (r2=88.5%), nitrates (r2=85.7%), conductivity 

(r2=81.7%) and dissolved oxygen (r2=81.9%). 

Figure 1: Lake Karla in central Greece was the study area. Several permanent (with yellow color) and non-permanent (with red color) 

sampling locations have been employed (top, second from left).  Landsat 8 colour composites (RGB 432) before and after the 

radiometric and atmospheric corrections are, also, shown (top). An example of the processing procedure for the Landsat 7 datasets are 

presented (bottom). Landsat 7 images before and after the developed gap-filling algorithm are shown. The detected inland water in a 

binary format and the estimated map with dissolved oxygen concentrations are also demonstrated. Note that all the processing 

procedure is automated. 
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Regarding the satellite datasets a number of band ratios, indices 

and equations established relationships with correlation rates. In 

Table 1, the highest correlation rates (r2) that were calculated 

per satellite sensor (i.e, Landsat 7 or Landsat 8), per water 

quality indicator (i.e, pH, Chla, etc) and per spectral band 

combination (e.g., ratio) are shown. Regarding chlorophyll-a 

the highest rates were calculated for the EXP(R835/R2220), 

EXP(R835/R660), EXP(R835/R1650), R835/R660, 

(R835/R660)+R1650, R835/R2220, R835/(R485+R560+R660), 

EXP(R835/R560), LnR660-LnR835 formulas and for Landsat 

7. However, the R835/R660 was selected as was most simple

and included bands that seemed to correlated more with chla. 

For Landsat 8, the higher rates were for the (R480-R655)/R560, 

R560-R865, EXP(R865/R1610), R480-R560, R560-R480, 

R440-R560, R560-R440, R560-R655 formulas and the selected 

of the same reasons was the R480-R560. For both sensors the 

R835, R660 and R560 spectral bands (and their neighbours) 

were involved in most high correlated models. 

Regarding NH4 concentrations, the high rates for Landsat 7 

were the EXP(R600/R835), R600/R835, EXP(R660/R835), 

EXP(R600/R1650), EXP(R660/R1650), (R600-R835)/R660, 

EXP(R600/R2220), R660/R835 and R600-R835 formulas, 

while the one employed was the R600/R835. Regarding Landsat 

8, the highest rates were for the (R480-R655)/R560, R480-

R560, R560-R480, EXP(R865/R1690), R560-R865, R440-

R560, R560-R440, R560-R655, R480/R2200 formulas. The 

first one was employed for calculating the corresponding maps. 

For both sensors the R560, R835 and R660 spectral bands (and 

their neighbours) were involved in most high correlated models. 

Regarding the pH parameter, for Landsat 7 the highest rates 

were for the LnR485-LnR2220, R485-R2220, R485/R2220, 

R485-R1650, EXP(R2220), R2220, LnR2220 and 

EXP(R485/R2220) formulas, while for Landsat 8 the highest 

correlations were for the LnR865-LnB6, R865/R1690, R440-

R560, R560-R440, R865/R2200, R480-R560, R560-R480, 

R655/R2200, R480/R2200 and LnR440-LnR2200. For both 

sensors the R485 and R2200 spectral bands (and their 

neighbours) were involved in most high correlated models. 

3. EXPERIMENTAL RESULTS AND VALIDATION

Regarding the evaluation of the employed empirical algorithms 

the overall validation indicated that several water quality 

indicators could quite accurately estimated through high 

resolution multispectral data. In particular, the highest rates 

were for chl-a (r2=89.80%), dissolved oxygen (r2=88.53%), 

conductivity (r2=88.18%), ammonium (r2=87.2%) and pH 

(r2=86.35%), while the total phosphorus (r2=70.55%) and 

nitrates (r2=55.50%) resulted in lower correlation rates. 

Note that algorithms which included the EXP form, while in 

many cases provided high correlations, proved to be sensitive 

and unable to estimate correctly the corresponding parameters 

especially in images with a certain cloud cover. In particular, 

images with important cloud cover had to be excluded due to 

certain inaccurate reflectance calculations and relative 

radiometric calibration. 

Experimental results regarding chla concentrations 

demonstrated quite promising correlations i.e, for L7 

[r2=89.80%, (R835/R660)] and L8 [r2=76.65%, (R480-R565)]. 

These quantitative results were also verified from the performed 

comparison between the delivered maps from L7 and L8 for 

close dates. In particular, the two sensors and the employed per-

sensor model estimated the same concentration levels when 

only one day temporal difference. Few higher differences were 

calculated in the quite shallow parts of the lake. In general, 

when comparing with the in-situ ground truth data the 

calculated chla levels were slightly overestimated with L7 data 

and slightly underestimated with L8 data. 

Table 1: The highest correlation rates (r2) that were calculated 

per satellite sensor (i.e, Landsat 7 or Landsat 8), per water 

quality indicator (i.e, pH, Chla, etc) and per spectral band 

combination (e.g., ratio). 
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Regarding the DO estimation the experimental results indicated 

high correlation rates i.e, [r2= 88.53%, (R560+660)/2 for L7 

and r2=80.49%, (R480/R655) for L8]. This was also confirmed 

by the comparative analysis between the two sensors for maps 

of closing dates. The conductivity was estimated, also, for both 

sensors with high rates [r2=66.02%, (R485-R835)/(R660-R835) 

for L7 and r2=88.18%, (R480-R655)/R560 for L8].  

Moreover, regarding the estimation of NH4 concentrations high 

correlations were established [r2=94.32%, (R560/R835) for L7 

and r2=80.64%, (R480-R655)/R560 for L8] by the regression 

models. However, when all the multi-temporal maps were 

computed for all the acquired data for the 4 years period, some 

negative values where calculated indicating that the established 

relation was sensitive to certain optical variations. 

The pH parameter was estimated, also, with high correlation 

rates [r2=82.46%, (R485/R2220] for L7 and r2=86.35%, 

(R865/R1610)] and delivered consistent and stable maps across 

the multi-temporal dataset. 

The TP and NO3 parameters were calculated with lower rates 

than the aforementioned ones. In particular, the TP was 

estimated with a higher rate r2=70.55% (R660/R835) for the L7 

datastes and with a lower one r2=50.82% (R560-R1610) for L8. 

For the estimation of NO3 concentrations the calculated 

correlation was at r2=55.50% (R835/R2220) for L7 and 

r2=55.50% (LnR1610-Ln2200) for L8. 

Generally speaking, chla resulted to high correlations and 

included the RED and NIR bands. NO3 mainly the SWIR2, NH4 

the GREEN and BLUE, the TP for GREEN and the pH for 

SWIR2, BLUE, GREEN and RED. These observations are, 

generally, in accordance with the literature. In particular, there 

is a number of studies that established correlations for e.g., chla 

between the Landsat ETM1, ETM2, ETM3 and ETM4 bands, 

Figure 2: Multi-temporal geospatial maps with the estimated concentrations for certain key water quality indicators. It can be observed 

that chlorophyll-a presented slight variations throughout the year. TP reached certain peaks in March and then dropped to lower rates. 

Conductivity resulted in high rates throughout the year although from June and afterwards there was a minor decrease. Dissolved 

oxygen reached a maximum in March (as TP) and then decreased stably. 
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while the models were constructed using genetic algorithms, 

multilinear regression with correlations ranged from r2 =0.58 to 

0.95 (Chen et al. 2008,, Alparslan et al., 2007, Hellweger et al, 

2007, Tyler et al., 2006, Han et al., 2005, Vincent et al, 2004).  

4. CONCLUSIONS

We have experimented with Landsat 7 and Landsat 8 multi-

temporal satellite data, coupled with hyperspectral data from a 

field spectroradiometer and in-situ ground truth data with 

several physico-chemical and other key monitoring indicators. 

All available datasets, covering a 4 years period, in our case 

study Lake Karla in Greece, were processed and fused under a 

quantitative evaluation framework. The performed comprehend-

sive analysis posed certain questions regarding the applicability 

of single empirical models across multi-temporal, multi-sensor 

datasets towards the accurate prediction of key water quality 

indicators for shallow inland systems. Landsat 7 and 8 resulted 

in quite promising results indicating that from the recreation of 

the lake and onward concrete per-sensor, per-depth prediction 

models can be successfully established. The highest rates were 

for chl-a (r2=89.80%), dissolved oxygen (r2=88.53%), 

conductivity (r2=88.18%), ammonium (r2=87.2%) and pH 

(r2=86.35%), while the total phosphorus (r2=70.55%) and 

nitrates (r2=55.50%) resulted in lower correlation rates. 
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