IMAGE FUSION AND IMAGE QUALITY ASSESSMENT OF FUSED IMAGES

Zhen Han a, *, Xinming Tang b, Xiaoming Gao b, Fen Hu b

a School of Mapping And Geographic Information Systems, Lanzhou Jiao Tong University, China. 
b Satellite Surveying and Mapping Application Centre, NASG, China.

KEY WORDS: Image Fusion, Brovey, PCA, Pansharpe, SFIM, Accuracy Evaluation

ABSTRACT:

It is of great value to fuse a high-resolution panchromatic image and low-resolution multi-spectral images for object recognition. In the paper, tow frames of remotely sensed imagery, including ZY03 and SPOT05, are selected as the source data. Four fusion methods, including Brovey, PCA, Pansharpe, and SFIM, are used to fuse the images of multispectral bands and panchromatic band. Three quantitative indicators were calculated and analyzed, that is, gradient, correlation coefficient and deviation. According to comprehensive evaluation and comparison, the best effect is SFIM transformation, combined with fusion image through four transformation methods.

1. INTRODUCTION

In recent years, the launch of high-resolution satellites has opened a new era for remote sensing. With these remote sensors, images of various spatial and spectral characteristic can be obtained. For example, from the ZY03 sensor, 2.1 m resolution panchromatic and 5.6 m resolution multispectral and 3.5 m resolution front-facing, rear-facing images are available. With the development of remote technique and the launch of new satellites, remote image have great promoted at spatial resolution and spectral resolution (Wang, 2003). Fusion of two images from different sources can provide information that cannot be obtained when the images are processed individually. Image fusion can improve the accuracy when we extract useful information from image (Jia, 2000). To date, various fusion algorithms have been developed (Chavez, 1991, Siddiqui, 2003, Hallada, 1983, Vrabel, 2002). As Zhang combined DWT and IHS algorithms and apply to image fusion of the IKONOS and Quick Bird (Zhang, 2005). Yang combined NSCT and HIS and apply to image fusion of the SPOT and TM (Yang, 2008). In the paper, we tested Brovey, PCA, Pansharpe and SFIM. And we assessed the quality of fusion image with indices of gradient, correlation coefficient and deviation.

2. IMAGE FUSION METHODS AND QUALITY INDICATORS

2.1 Image fusion methods

In this section, we analyze image fusion method that can be used for high-resolution satellite image fusion, such as those for fusion of panchromatic and multi-spectral images. Four categories of image fusion methods are addressed: Brovey, PCA, Pansharpe, and SFIM.

1) Brovey Algorithm

The Brovey Algorithm is a ratio method that normalizes multispectral bands used for an RGB display (GILLESPIE, 1987). The result is then multiplied by a high-resolution band to add high spatial frequency information. The Brovey Algorithm can only allow a limited number of bands to be fused. The Brovey Algorithm can be defined as follows:

\[ B_{i,NEW} = \frac{B_{i,m}}{B_{r,m} + B_{g,m} + B_{b,m}} \times B_h \]  

Where \( B_{i,NEW} \) is the \( i \) th band of fused high-resolution image, \( B_{i,m} \) is one of the bands, that is red band, green band or blue band. \( B_{r,m}, B_{g,m}, B_{b,m} \) stand the pixel value of red band, green band and blue band. \( B_h \) is the high-resolution image.

2) PCA Algorithm

PCA transform is created based on the statistical characteristics dimensional linear transformation, the mathematical transformation is called K-L(Sun, 2002). The PCA transform converts intercorrelated MS bands into a new set of uncorrelated components. The first component also resembles a PAN image. It is, therefore, replaced by a high-resolution PAN for the fusion. The PAN image is fused into the low-resolution MS bands by performing a reverse PCA transform.

3) Pansharpe Algorithm

The PANSHARPE algorithm is based on the least number of squares to an approximate
gray-value relationship between the original multispectral image, 
panchromatic image, and fused image. This method also 
statistics all bands of the input and fusion results in order to 
eliminate the dependence of the data set (Tan, 2008).

4) SFIM Algorithm
The SFIM is a ratio method that the high-resolution image 
is divided by a simulated low-resolution image and the result is 
themultiplied by the low-resolution image. The algorithm was 
deﬁned by LIU (2000a) as below:

\[
B_{SFIM_i} = \frac{B_{low_i} \times B_{high}}{B_{mean}} 
\]  

(2)

Where \( B_{SFIM_i} \) is the \( i \) th band of fused high-resolution 
image, \( B_{low_i} \) is a pixel in the \( i \) th band of a low-resolution 
input image, co-registered to a high-resolution input image 
\( B_{high} \), and \( B_{mean} \) is a corresponding pixel in a simulated low-
resolution image derived from \( B_{high} \) using an average filter for a 
neighborhood equivalent to the resolution of \( B_{high} \).

2.2 Quality indicators for assessing image fusion
The purpose of image fusion is to enhance the spatial and 
spectral resolution from several low-resolution images. Several 
indices have been proposed for assessing image quality, which 
can also be applied to assessing the quality of a fusing image. In 
this section, we select three indices to assess the quality of 
fusion image. Those includes: gradient, correlation coefficient 
and deviation.

1) Gradient:
\[
g = \frac{1}{M \times N} \sum_{x=1}^{M} \sum_{y=1}^{N} \sqrt{\left(\Delta F_x^2 + \Delta F_y^2\right) / 2} 
\]  

(3)

The gray-scale variation of the image in a direction. Tiny detail 
and texture changes can be reﬂected with this index.

2) Deviation:
\[
WF_k = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{DN_{i,j}^k - D_{mean}^k}{D_{mean}^k} 
\]  

(4)

where \( WF_k \) is the deviation index of the \( k \) th band, 
\( D_{mean}^k \) denotes the original image gray level of a pixel with 
coordinate \((i, j)\), \( DN_{i,j}^k \) denotes the fusion image gray level of a pixel with 
coordinate \((i, j)\). Deviation index used to compare 
the degree of deviation of fusion images and low-resolution 
multispectral images.

3) Correlation:
\[
C(F, R) = \frac{\sum_{i=1}^{M} \sum_{j=1}^{N} [R(i,j) - \overline{R}][F(i,j) - \overline{F}]}{\sqrt{\sum_{i=1}^{M} \sum_{j=1}^{N} [R(i,j) - \overline{R}]^2 \sum_{i=1}^{M} \sum_{j=1}^{N} [F(i,j) - \overline{F}]^2}} 
\]  

(5)

where \( F \) and \( R \) are two images, \( R(i,j) \) and \( F(i,j) \) the 
elements of the image \( R \) and the image \( F \), respectively. \( \overline{R} \) and \( \overline{F} \) stand for their mean values. If \( C(F, R) \) is closer to 1, which 
means that the two images are more similar and the better the 
fusion image fidelity.

3. RESULT AND ANALYSIS

3.1 Result
In the paper, four fusion methods, including Brovey, PCA, 
Pansharpen, and SFIM, are used to fuse the images of 
multispectral bands and panchromatic band. Three quantitative 
indicators were calculated and analyzed, that is, gradient, 
correlation coefficient and deviation. Figure.1 is the original 
image of ZY03, Figure.2 is the fusion image of ZY03, Figure.3 is 
the original image of SPOT05, Figure.4 is the fusion image of 
SPOT05.

This contribution has been peer-reviewed. The peer-review was conducted on the basis of the abstract.
3.2 Quantitative analysis

Considering the drawbacks of the subjective quality assessment method, much effort has been devoted to develop objective image quality assessment methods. A good fusion approach retain the maximum spatial and spectral information from the original images and should not damage the internal relationship among the original bands. Based on these three criteria, we select gradient, correlation coefficient and deviation to assess the fusion image.

<table>
<thead>
<tr>
<th>fusion methods</th>
<th>gradient</th>
<th>deviation</th>
<th>correlation coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brovey</td>
<td>8.31111</td>
<td>0.528676</td>
<td>0.432419</td>
</tr>
<tr>
<td>PCA</td>
<td>9.78541</td>
<td>0.41091</td>
<td>0.88356</td>
</tr>
<tr>
<td>Pansharp</td>
<td>13.16326</td>
<td>0.03310</td>
<td>0.93890</td>
</tr>
<tr>
<td>SFIM</td>
<td>13.10289</td>
<td>0.02274</td>
<td>0.96633</td>
</tr>
</tbody>
</table>

Table 1 Assessment results of ZY03 fused image

<table>
<thead>
<tr>
<th>fusion methods</th>
<th>gradient</th>
<th>deviation</th>
<th>correlation coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brovey</td>
<td>1.61168</td>
<td>0.65731</td>
<td>0.22867</td>
</tr>
<tr>
<td>PCA</td>
<td>4.52237</td>
<td>0.05483</td>
<td>0.81224</td>
</tr>
<tr>
<td>Pansharp</td>
<td>3.31930</td>
<td>0.02060</td>
<td>0.93861</td>
</tr>
<tr>
<td>SFIM</td>
<td>3.44472</td>
<td>0.01801</td>
<td>0.95655</td>
</tr>
</tbody>
</table>

Table 2 Assessment results of SPOT05 fused image

Form Table 1, we observe that the value of gradient obtained by SFIM transformation method is almost the largest (SFIM: 13.102892 ≈ Pansharp: 13.163267), the value of deviation obtained by SFIM transformation method is minimum, and the value of correlation coefficient obtained by SFIM transformation method is the largest. From these quantitative results, we can conclude that the fusion result which is obtained by SFIM transformation method is the best.

Form Table 2, we observe that the value of gradient obtained by SFIM transformation method is the largest, the value of deviation obtained by SFIM transformation method is minimum, and the value of correlation coefficient obtained by SFIM transformation method is the largest. From these quantitative results, we can conclude that the fusion result which is obtained by SFIM transformation method is the best.

4. CONCLUSIONS

Selection of proper fusion technique depends on the specific remote image. Four fusion methods, including Brovey, PCA, Pansharp, and SFIM, are used to fuse the images of multispectral bands and panchromatic band. Three quantitative indicators were calculated and analyzed, that is, gradient, correlation coefficient and deviation. Finally, form the above analysis and comparison, we can conclude that SFIM algorithm can preserve the spectral characteristics of the source multispectral image as well as the high spatial resolution characteristics of the source panchromatic image and suited for fusion ZY03 and SPOT05 images.

5. ACKNOWLEDGEMENTS

This work was supported by the funds from the Monitoring Techniques System of Base Geographical Conditions Research (Project No. 2012BAH28B01).

References


This contribution has been peer-reviewed. The peer-review was conducted on the basis of the abstract.