Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-5, 101-106, 2014
https://doi.org/10.5194/isprsarchives-XL-5-101-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
 
05 Jun 2014
A voxel-based technique to estimate the volume of trees from terrestrial laser scanner data
A. Bienert1, C. Hess2, H.-G. Maas1, and G. von Oheimb2 1Technische Universität Dresden, Institute of Photogrammetry and Remote Sensing, 01062 Dresden, Germany
2Leuphana Universität Lüneburg, Institute of Ecology, 21335 Lüneburg, Germany
Keywords: Terrestrial Laser Scanning, Point Cloud, Tree, Volume Estimation, Voxel Abstract. The precise determination of the volume of standing trees is very important for ecological and economical considerations in forestry. If terrestrial laser scanner data are available, a simple approach for volume determination is given by allocating points into a voxel structure and subsequently counting the filled voxels. Generally, this method will overestimate the volume. The paper presents an improved algorithm to estimate the wood volume of trees using a voxel-based method which will correct for the overestimation. After voxel space transformation, each voxel which contains points is reduced to the volume of its surrounding bounding box. In a next step, occluded (inner stem) voxels are identified by a neighbourhood analysis sweeping in the X and Y direction of each filled voxel. Finally, the wood volume of the tree is composed by the sum of the bounding box volumes of the outer voxels and the volume of all occluded inner voxels. Scan data sets from several young Norway maple trees (Acer platanoides) were used to analyse the algorithm. Therefore, the scanned trees as well as their representing point clouds were separated in different components (stem, branches) to make a meaningful comparison. Two reference measurements were performed for validation: A direct wood volume measurement by placing the tree components into a water tank, and a frustum calculation of small trunk segments by measuring the radii along the trunk. Overall, the results show slightly underestimated volumes (–0.3% for a probe of 13 trees) with a RMSE of 11.6% for the individual tree volume calculated with the new approach.
Conference paper (PDF, 1777 KB)


Citation: Bienert, A., Hess, C., Maas, H.-G., and von Oheimb, G.: A voxel-based technique to estimate the volume of trees from terrestrial laser scanner data, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-5, 101-106, https://doi.org/10.5194/isprsarchives-XL-5-101-2014, 2014.

BibTeX EndNote Reference Manager XML