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ABSTRACT: 

This paper discusses a methodology to evaluate the precision and the accuracy of a commercial Mobile Mapping System (MMS) 

with advanced statistical methods. So far, the metric potentialities of this emerging mapping technology have been studied in few 

papers, where generally the assumption that errors follow a normal distribution is made. In fact, this hypothesis should be carefully 

verified in advance, in order to test how well the Gaussian classic statistics can adapt to datasets that are usually affected by 

asymmetrical gross errors. The workflow adopted in this study relies on a Gaussian assessment, followed by an outlier filtering 

process. Finally, non-parametric statistical models are applied, in order to achieve a robust estimation of the error dispersion. Among 

the different MMSs available on the market, the latest solution provided by RIEGL is here tested, i.e. the VMX-450 Mobile Laser 

Scanning System. The test-area is the historic city centre of Trento (Italy), selected in order to assess the system performance in 

dealing with a challenging and historic urban scenario. Reference measures are derived from photogrammetric and Terrestrial Laser 

Scanning (TLS) surveys. All datasets show a large lack of symmetry that leads to the conclusion that the standard normal parameters 

are not adequate to assess this type of data. The use of non-normal statistics gives thus a more appropriate description of the data and 

yields results that meet the quoted a-priori errors.  

 

 

1. INTRODUCTION 

1.1 MMS technology 

Mobile Mapping System (MMS) is nowadays an emerging 

technology, whose development began in the late 1980s and is 

constantly growing. From a technological point of view, MMS 

is a multi-sensor system, that consists mainly of three 

components: mapping sensors (active and/or passive 3D 

imaging systems), navigation/positioning sensors (IMU/GNSS) 

and a control unit, that synchronizes and integrates the 

acquisition of geometric/positioning information. All sensors 

are integrated on a rigid moving platform (e.g. vans, cars, trains, 

boats, snow mobile sledges, people, etc.), whose trajectory is 

computed and finally used to produce geo-referenced 2D/3D 

data. Land-based mobile laser scanners mounted on vans or cars 

represent the best and a cost-effective solution for capturing 3D 

point clouds of urban areas with an high recording rate, high 

point density/accuracy and remote acquisition mode. Thanks to 

these benefits and to continuous developments in both scanning 

and navigation technologies, MMSs are gaining more and more 

importance in many application fields, such as civil engineering 

and construction (Slattery et al., 2012), environment (Bitenc et 

al., 2011), pipeline design (Kawashima et al., 2012), road 

inventory (Pu et al., 2011) and cultural heritage (Ziparo et al., 

2013). A general review of the different solutions available on 

the market and a comparison of their technical specifications 

can be found in Puente et al. (2013). 

 

1.2 Literature review on approaches for accuracy 

evaluation of MMS 

Terrestrial mobile mapping technology goes back to the 90’s 

when the first experiments showed the potential of mobile 

acquisitions for mapping purposes (Bossler and Novak, 1993; 

El-Sheimy et al., 1995; El-Sheimy, 1996).  

MMSs have then developed from a typical academic research to 

commercially operating systems used for topographic 

surveying, 3D mapping of traffic arteries, city planning, visual 

street-level image and vector data acquisition, visualization, etc. 

The accuracy requirements for the acquired data is substantially 

different in each application, with cartographic mapping and 

road or rail infrastructure surveying being much more 

demanding in this particular respect. Nowadays there are 

different commercial MMS solutions and they show the best 

example of sensor integration and cost-effective acquisition of 

geo-referenced spatial data, with a combination of digital 

imaging devices, long-range laser scanners and GNSS/IMU 

positioning sensors (Tao and Li, 2007). Besides results 

published by system manufacturers and linked to internally-

performed tests/procedures, there are few publications where 

MMS performances are examined with an external reference 

dataset and by an independent actor.  

One of the most recent studies has been carried out within the 

European Spatial Data Research (EuroSDR) project “Mobile 

Mapping – Road Environment Mapping Using Mobile Laser 

Scanning” (Kaartinen et al., 2012). This action aimed at 

benchmarking the performance of various MMSs using a 

permanent urban test-field established around a shopping mall. 

A digital elevation model, some poles and building corners were 

adopted as reference objects. After comparing the collected 

datasets against the ground-truth and performing a ‘gross error 

filtering’, the accuracy was finally derived by computing the 

minimum, the maximum and the standard deviation values of 

the differences. Tests provided an elevation accuracy better than 

3.5 cm for all professional systems properly calibrated (up to a 

range of 35 m), whereas the best system achieved a planimetric 

accuracy of 2.5 cm up to a range of 45 m.  

Lim et al. (2013) performed a field test at Padre Island National 

Seashore (USA) in order to evaluate the accuracy of point 

clouds collected by a MMS under variable settings of vehicle 

speed and point density. Six vertical targets were GNSS-

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5/W4, 2015 
3D Virtual Reconstruction and Visualization of Complex Architectures, 25-27 February 2015, Avila, Spain

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XL-5-W4-245-2015

 
245



 

measured and adopted as references. Comparisons led to a mean 

target error of -0.222 m (East), -0.036 m (North) and -0.104 m 

(Height). Given the excellent conditions for GNSS provided by 

the test-area, discrepancies were ascribed to boresight errors and 

a parameter-domain approach was developed in order to adjust 

the lever arm parameters.  

Prior to these studies, the StreetMapper mobile system received 

different attentions. Kremer and Hunter (2007) declared an 

accuracy range of 3-5 cm and reported some practical 

applications where the MMS could be used for mapping 

purposes. Barber et al. (2008) used GNSS measurements as 

references to evaluate precision and accuracy of laser scanning 

data collected in two test-sites, i.e. a residential and an industrial 

area. RMS errors in elevation were found to be in the order of 3 

cm, whereas the planimetric accuracy was set around 10 cm. 

Haala et al. (2008) adopted an existing 3D city model of the city 

of Stuttgart to provide area covering reference surfaces. The 

investigation sought to assess the quality of data collected at 

building façades. After a semi-automatic selection of surfaces 

from the 3D city model, corresponding planar patches were 

estimated by least square adjustment from the MMS-collected 

data. Comparisons proved that an accuracy better than 3 cm 

(standard deviation of the differences between measured and 

reference data) can be achieved by the system in good GNSS 

conditions.  

 

1.3 Paper objectives 

This paper describes an approach designed to analyse the 

precision and the accuracy achieved by a commercial MMS 

system with advanced statistical methods. The evaluation 

studies so far performed were generally based on the 

assumption that errors follow a normal distribution. In fact, this 

hypothesis should be carefully verified in advance, in order to 

test how well the Gaussian classic statistics can adapt to data 

sets that are usually affected by asymmetrical gross errors. In 

those cases where even a proper process of outlier removal is 

not effective, robust and non-parametric methods for the 

derivation of accuracy measures should be preferred. This 

strategy can be further improved if the signed errors are 

computed, in order to analyse not only the dispersion values 

(which are related to the sensor noise), but also the bias effects 

on the object surfaces. Aim of the present paper is to test a 

rigorous statistical workflow for the evaluation of MMS data 

collected in a historic city centre. The site is selected in order to 

assess the system performance in a challenging urban scenario, 

that includes several building typologies with complex and 

diverse geometries/materials. As reference datasets we employ 

point clouds derived from a photogrammetric and a Terrestrial 

Later Scanner (TLS) survey. Where possible, an error budget 

computation is discussed, in order to develop an adequate 

understanding of the most important components of uncertainty 

affecting the measurements.  

 

 

2. PROJECT DESCRIPTION 

2.1 MMS data with RIEGL VMX-450 

The MMS RIEGL platform (Figure 1 and Table 1) integrates 

two synchronously operated VQ-450 laser scanners, a portable 

control unit (VMX-450-CU) and IMU/GNSS navigation 

hardware. The system is able to measure up to 1.1 million 

points and 400 profiles per second, providing extremely dense 

and feature-rich data even at high driving speed. Furthermore, it 

exploits the RIEGL echo signal digitization technology and 

online waveform processing, resulting in a high penetration 

capability of obstructions (e.g. fences and vegetation). The 

platform is also equipped with the modular VMX-450-CS6 

camera system, that complements the acquisition of geometric 

data with the recording of time-stamped images. Up to six 

industrial digital colour cameras with electronic shutters and     

5 mm lens can be integrated. Camera calibration parameters are 

provided by the manufacturer, whereas exterior orientation 

parameters (i.e. time-stamped position and orientation of the 

cameras) are computed by RIEGL software in post-processing. 

The software includes several modules to manage each step of 

the processing pipeline, i.e. data acquisition (RiACQUIRE), 

data adjustment (RiPROCESS) and data geo-referencing 

(RiWORLD). 

 

 
Figure 1. Configuration of the RIEGL VMX-450 system. 

Sensor VQ-450 

Measuring principle Time of Flight 

Laser wavelength Near infrared 

Laser measurement rate 300 – 1100 kHz 

Maximum range 140 – 800 m  

Minimum range 1.5 m 

Accuracy 8 mm, 1σ 

Precision 5 mm, 1σ 

Sensor IMU/GNSS 

Absolute position 0.020 – 0.050 m 

Roll and pitch 0.005 º 

True heading 0.015 º 

Sensor VMX-450-CS6 

Resolution 5 Mpx 

Sensor size 2452 x 2056 px 

Pixel size 3.45 μm 

Nominal focal length 5 mm 

Table 1. Technical characteristics of the RIEGL VMX-450 system 

according to the manufacturer. 

 

2.2 Area of study and data collection 

The data acquisition took place on September 22nd, 2014. An 

area of about 700 m west to east by 500 m north to south was 

covered in the city centre of Trento (Italy). It represents a 

typical urban scenario, that can be divided into two test-sites: 

 the Duomo square (ca. 80 m x 70 m, Figure 2) surrounded by 

some of the most outstanding historical buildings of the city. 

Among them, five houses were selected for further analyses 

and segmented from the collected data. They include the 

Cathedral of San Vigilio in typical Romanesque style, the 

Medieval Palazzo Pretorio and some Renaissance buildings 

characterized by precious frescoed façades. 

 narrow streets (average width of 3-4 m) around the Duomo 

square, surrounded by painted private and public buildings. 

Among them, three houses were identified and further 

investigated, including the backside façade of Palazzo 

Pretorio, Santa Annunziata church and the old municipal 

building of the city.  
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The selected areas (Figure 3) represent a challenging test-field 

for MMS mapping, whose metric performance depends mostly 

on the accurate determination of the time-variant position and 

orientation parameters of the mobile platform. Therefore, 

multipath and signal loss effects caused by tall buildings on 

narrow spaces can deteriorate the GNSS conditions and, 

consequently the trajectory computation. The tight urban 

canyons of the surveyed city centre are a typical example of 

these unfavourable scenarios.  

Since the methodology adopted by the study is aimed at 

validating the final “commercial” product, the collected data 

was internally-processed by RIEGL experts and finally 

delivered as point clouds (LAS file format) in WGS84 global 

coordinate system. No attempts to evaluate each step of the 

calibration and adjustment processes are thus here undertaken.  

The point clouds are characterized by a mean spatial resolution 

of 2-3 cm and were exported separately for each of the two 

mounted laser scanners. Furthermore, three passes were 

collected in the Duomo square, resulting in six separate point 

clouds. This provided the possibility to assess the internal 

precision and consistency of the captured datasets.  

 

 
Figure 2. Close-up view of the coloured 3D point cloud collected by 

MMS in the Duomo square of Trento (Italy). 

 
Figure 3. The trajectory of the area surveyed with the MMS and the 
buildings selected for statistical analyses in the square (red and blue 

symbols) and in the narrow streets (green symbols). 

 

 

2.3 Reference data 

2.3.1 Photogrammetric survey 

The photogrammetric survey was carried out in the open square 

where the most notable historic buildings are located. This 

allowed an optimal design of the photogrammetric network, 

whose layout was selected in order to optimize the accuracy and 

completeness of the final 3D point cloud. Only the buildings in 

the square (red and blue symbols in Figure 3) were thus 

reconstructed. 

The image acquisition phase was performed using a Nikon D3X 

digital camera (35.9 × 24.0 mm sensor size, 5.95 m pixel size) 

equipped with two fixed focal length lenses (35 and 50 mm). A 

total of 359 images were collected at a mean camera-object 

distance of 25 m, achieving an average GSD of 3.5 mm. Using 

design equations and an a-priori image measurement accuracy 

of 1/2 pixel (Luhmann et al., 2006), the range uncertainty and 

lateral resolution on the final model were anticipated to be in 

the [4.0;4.2] mm and [2.9;4.2] mm ranges, respectively. 

Both image orientation and dense image matching were carried 

out using Agisoft Photoscan. 18 natural GCPs, measured with a 

total station, were used as observed unknowns in the bundle 

adjustment for the image orientation phase. The re-projection 

error was 0.52 pixels. In order to achieve a reasonable trade-off 

between processing effort and resolution, the successive dense 

matching was performed using the second-level image pyramid. 

Thus the derived dense point cloud (Figure 4) features a mean 

spatial resolution of 7 mm and consists of more than 107 

million points.  

 

 
Figure 4. Photogrammetric dense reconstruction of the Duomo square in 

Trento (Italy). 

 

2.3.2 Terrestrial Laser Scanner survey 

A Leica HDS7000 TOF CW laser scanner was used to acquire 

ultra-dense point clouds of two symmetrical buildings in the 

square (Figure 5 - blue blocks in Figure 3) and of those in the 

narrow streets (green blocks in Figure 3). More than 15 

different scans were necessary to achieve a complete 3D 

reconstruction of the scene, with a mean instrument-object 

distance of 10 m.  

 
Figure 5. TLS ultra-dense reconstruction of two symmetrical buildings 

in the Duomo square of Trento (Italy). 
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Adopting the error propagation formulated in (Reshetyuk, 2009) 

and computing the beam divergence according to (Lichti and 

Gordon, 2004), the a-priori error on the surface is expected to 

be 3 mm. The alignment of the TLS scans in a local coordinate 

system was carried out using both planar contrast targets and 

natural points. No absolute geo-referencing was performed. The 

final registration error was below 4 mm. This last value can be 

considered a more realistic representation of the noise level 

present in the final 3D point clouds. The final point cloud is 

characterized by a mean spatial resolution of 3 mm, resulting in 

more than 240 million points. 

 

 

3. METHODOLOGY 

3.1 Cloud-to-Cloud signed distance computation 

In order to perform the statistical analyses with a reasonable 

computational effort and to highlight any effects dependent on 

the building typology, both MMS and reference data are 

segmented in separate blocks. The Duomo square is divided into 

five blocks (hereinafter termed “Cathedral”, “Palace”, “Café”, 

“Houses” and “Hotel” in accordance with their main present-

day function), whereas in narrow streets three distinct buildings 

are segmented (hereinafter called “Garibaldi”, “Belenzani” and 

“Cavour” from the name of the corresponding street). After the 

removal of non-significant points (i.e. those belonging to time-

variant elements such as pedestrians and vegetation), the MMS 

data is registered with the reference ones (both photogrammetric 

and TLS point clouds) using the ICP algorithm implemented in 

Trimble Realworks. For each segmented building, cloud-to-

cloud signed distances are then computed adopting the method 

Multiscale Model to Model Cloud Comparison (Lague et al., 

2013). This algorithm, implemented in CloudCompare v2.6, 

performs a direct comparison of point clouds in 3D, avoiding 

the preliminary phase of meshing or gridding. Two steps are 

sequentially performed. At first, surface normals are estimated 

and oriented in 3D at a user-selectable scale, that should be 

consistent with the local surface roughness. Then, for each 

selected core point, the local distance between the two clouds is 

extracted. A confidence interval depending on point cloud 

roughness and registration error is computed as well. In the 

presented tests, each point of the MMS data is selected as 

“core” and a 50 cm normal scale is adopted in accordance with 

the local spatial resolution and suggestions given in Lague et al. 

(2013).  

 

3.2 Statistical analyses 

Our accuracy tests are performed using ‘reference’ data derived 

from a photogrammetric and a TLS survey. When comparing 

point clouds acquired by different instruments, some issues 

should be considered: 

 a proper error budget computation should be defined, since 

each system has its own sources of uncertainties and 

sensitivity to outlier presence. 

 the compared 3D points are not exactly corresponding to each 

other. 

 the object surfaces are not equally digitized as the acquisition 

positions are different. 

Due to these reasons, the number of gross errors affecting the 

datasets increases, thus requiring a rigorous statistical approach 

to be applied. The workflow adopted in this study is 

summarized in Figure 6 and follows Rodríguez-Gonzálvez et al. 

(2014). 

In order to prevent possible bias effects affecting the data 

processing, the normality assumption, i.e. the hypothesis that 

errors follow a Gaussian distribution, should be carefully 

checked. This can be carried out in various ways. Among them, 

the most common method is represented by the normality tests 

(D’Agostino, 1986). However, this approach does not work 

properly with very large samples (Rodríguez-Gonzálvez et al., 

2014). In that case, a well-suited diagnostic should be preferred, 

such as the study of the graphical deviation in the Q-Q plot 

(Hasan et al., 2011; Hoehle, 2011). It reports the quantiles of the 

empirical distribution function with respect to the theoretical 

quantiles of the normal distribution function. If errors are 

distributed according to the Gaussian function, the Q-Q plot 

should be a diagonal straight line. Additional parameters, such 

as Skewness and Kurtosis can further support the normality 

assessment. The Skewness provides an indication of departure 

from symmetry in a distribution (asymmetry around the mean 

value) and is expressed as: 
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The Kurtosis is a measure of whether the data are peaked or flat 

relative to a normal distribution and is expressed as: 
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If the distribution is perfectly normal, Skewness and Kurtosis 

values of zero and three are obtained, respectively. 

If the sample follows a Gaussian distribution, the error 

population can be characterized using the mean error (µ) and 

the standard deviation (). On the other hand, if the sample is 

not normally distributed, either due to the presence of outliers or 

because a different population’s hypothesis applies, a robust 

model based on non-parametric estimation should be employed. 

In this case, the median (m) and the median absolute deviation 

(MAD) are used as robust measures instead of the mean and 

standard deviation, respectively. The MAD is defined as the 

median (m) of the absolute deviations from the data’s median 

(mx):  

 MAD ( )i xm x m   (3) 

In this work, both Gaussian statistics and the robust ones are 

computed for each comparison. Furthermore, analyses are 

performed not only on the raw data, but also on those derived 

from a filtering process. The latter is performed by applying the 

classical 3 rule for outliers removal (Nkurunziza and 

Vermeire, 2014). 

 

 
 

Figure 6. Statistical workflow. 
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4. RESULTS 

Following the methodology described in Section 3, a two-folds 

study is then carried out assessing precision and accuracy of the 

Trento’s MMS data. The precision of the MMS point clouds is a 

measure of the scatter of observed values whereas the accuracy 

is meant as the agreement between measurement results and the 

corresponding true value.   

The MMS data precision is determined by comparing the 

different scans captured by the two lasers scanners at the same 

time (i.e. same timestamps) and in two subsequent acquisitions 

(i.e. different timestamps) on the same common surface. The 

Cathedral façade is selected as test-area for this analysis. Of 

course, for perfect geo-referencing and calibration procedures, 

no discrepancies between the measures from different scanners 

and/or different epochs should be present. In fact, this problem 

may arise, as also previously revealed (Barber et al., 2008; 

Haala et al., 2008). Furthermore, several passes are usually 

required in order to achieve a complete reconstruction of 

complex buildings, especially when MMS mapping is applied to 

historic city centres. The quality of the post-processing 

adjustment should be thus assessed. 

On the other hand, the MMS data accuracy is evaluated. 

Reference measures are derived from the photogrammetric and 

TLS surveys. The former is restricted to the buildings in the 

open square, where the photogrammetric results could be 

optimized due to a favourable camera network. On the other 

hand, TLS is exploited for the acquisition of ultra-dense point 

clouds in the narrow streets, where the GNSS quality is reduced 

and MMS acquisition angles are far from the optimal case. TLS 

measurements are acquired in the square too, in order to achieve 

a denser “ground truth”. However, this is only feasible for two 

selected areas, due to the considerable effort for data collection.  

 

4.1 Precision evaluation 

Among the three subsequent passes collected in the square, two 

acquisition stripes are selected for the precision evaluation, 

since they both allow a good coverage of the Cathedral façade. 

At each of the two epochs (denoted as t0 and t1), two point 

clouds are recorded by the two laser scanners on the MMS 

(named LS1 and LS2). Four separate point clouds are thus 

recorded and compared. Data acquired by LS1 at the epoch t0 

(named LS1-t0) are selected as reference for all comparisons.  

Following the workflow outlined in Figure 6 and given the large 

size of the samples, the Gaussian assessment is performed by 

evaluating the graphical deviation in the Q-Q plot. For each of 

the three comparisons, the statistical graphic is derived for the 

error population computed with the Multiscale Model to Model 

Cloud Comparison. The original distance dataset is then filtered 

with the 3σ criterion and the corresponding Q-Q plot is 

extracted again.  Figure 7 shows the plots obtained from the 

comparison of LS2-t0 point cloud against the reference one  (LS1-

t0). The Q-Q plot shape extracted for the original (raw) dataset 

(Figure 7a) is significantly far away from the ideal normal 

hypothesis. On the other hand, the error sample derived from 

the outlier filtering is closer to the Gaussian distribution (Figure 

7b), but not enough to allow a parametric error estimation. Both 

the parametric and non-parametric statistics are finally 

computed and summarized in Table 2.    

As expected, Kurtosis and Skewness parameters agree with the 

outcomes of the graphical analyses (Q-Q plots): a significant 

percentage of outliers affects the original population and should 

be removed. Furthermore, by considering the robust error 

measures computed after the outlier removal, a mean bias 

between point clouds of 2.6 mm is observed. On the other hand, 

the robust measure of dispersion (MAD) reaches up to               

± 5.8 mm, and increases up to ± 8.6 mm under a Gaussian 

hypothesis1. If comparisons performed with data acquired at the 

same epoch provide a means of assessment for errors related to 

LS noise and calibration uncertainty, the analyses on multi-

epochs data account also for the post-processing error 

propagation. Values of median and MAD increase when point 

clouds with different timestamps are compared, highlighting 

some expected limitations of the geo-referencing procedure. 

The latter, in fact, was performed without including any ground 

control information within the trajectory adjustment procedure.   

Finally, along with the numerical statistics, a spatial distribution 

of the discrepancies can be studied. The colour-coded maps of 

signed distances reveal the presence of typical error stripes, that 

are more or less coincident with scanning orientation. For 

instance, Figure 8 shows the errors computed from the 

comparison of LS2-t0 point cloud against the reference one. The 

scale ranges from – 0.01 m (blue) to 0.01 m (red). 

Pre-filtering comparison Post-filtering comparison 

a)  b)  

Figure 7. Q-Q plots of the comparison LS2-t0 vs. LS1-t0 . The quantiles of 
input sample (vertical axis) are plotted against the standard normal 

quantiles (horizontal axis). Pre-filtering (a) and post-filtering (b) data 

are shown.  

Raw comparison LS2-t0 LS1-t1 LS2-t1 

Number of points 3,651,128 829,741 661,362 

Sample mean (cm) -0.78 -0.06 -0.13 

Standard deviation (cm) ± 6.83 ± 4.96 ± 4.92 

Median (cm) -0.27 -0.25 -0.26 

MAD (cm) ± 0.43 ± 0.62 ± 0.65 

Kurtosis (-) 47.24 69.59 75.46 

Skewness (-) -0.25 -0.01 0.57 

Filtered comparison LS2-t0 LS1-t1 LS2-t1 

Number of points 3,126,270 738,842 581,103 

Sample mean (cm) -0.25 -0.28 -0.36 

Standard deviation (cm) ± 0.65 ± 0.93 ± 0.89 

Median (cm) -0.24 -0.27 -0.28 

MAD (cm) ± 0.35 ± 0.54 ± 0.58 

Kurtosis (-) 3.74 3.60 3.34 

Skewness (-) -0.08 0.00 -0.09 

Table 2. Statistical results of the raw and post-processed MMS data 
analyses.   

 
Figure 8. Colour-coded map of the comparison between LS2-t0 vs. LS1-t0. 

Differences range between – 0.01 m (blue) and 0.01 m (red). White 

areas represent no-data surfaces. 

                                                                 
1
 The Gaussian estimation of the MAD is computed as (1.4826*MAD) 
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4.2 Accuracy evaluation 

To evaluate the accuracy of a single MMS point cloud against 

the reference data (photogrammetry and TLS), a pre-registration 

phase with ICP is carried out, in order to dismiss the 

uncertainties associated to the global coordinate geo-

referencing. Only the errors affecting the 3D modelling and 

reconstruction of the architectural element are thus analysed. 

 

4.2.1 Comparison with the photogrammetric reference 

data 

All Q-Q plots prove that distances computed with the raw 

datasets are not suitable for a Gaussian estimation. As shown 

from the example given in Figure 9a, the input samples are far 

away from the ideal distribution. Gross errors should thus be 

filtered out, since they can corrupt the true statistical 

distribution of discrepancies. This evidence is verified again by 

the extremely high values of Kurtosis and Skewness parameters 

(see Table 3 - upper part). 

After the filtering, the resulting datasets are more close to a 

normal distribution: this is confirmed by both graphical 

analyses (Q-Q plot in Figure 9b) and numerical ones (Kurtosis 

and Skewness parameters in Table 3 - bottom part).  

Pre-filtering comparison Post-filtering comparison 

a)  b)  

Figure 9. Q-Q plots of the comparison MMS vs. Photogrammetry for 

the Café dataset. The quantiles of the input sample (vertical axis) are 

plotted against the standard normal quantiles (horizontal axis). Pre-
filtering (a) and post-filtering (b) data are shown.  

However, a robust analysis of the MMS accuracy is here 

advised. Table 3 (bottom part) lists the derived statistical values, 

that allow a robust estimation of the error. This can be defined 

as median ± MAD and it is here estimated as -0.7 mm ± 4.0 

mm. If a Gaussian measure of the MAD is computed, the error 

dispersion grows up to ± 5.9 mm. This second value can be 

compared against the a-priori value of uncertainty quoted for 

the reference dataset: results are consistent with both the 

photogrammetric lateral resolution and range uncertainty.

 

a) b) c) 

  

 

 

  

Figure 10.  Colour-coded maps of the comparison analysis between the MMS and Photogrammetry data for the Cathedral (a), Palace (b) and Hotel (c) 
datasets. The scale ranges from - 0.01 m (blue) to 0.01 m (red). Corresponding photogrammetric point clouds are shown below.  

Raw comparison Café Cathedral Palace Houses Hotel 

Number of points 249,368 3,257,278 687,885 1,372,294 695,607 

Sample mean (cm) -0.69 -0.12 0.25 -0.40 0.28 

Standard deviation (cm) ± 6.42 ± 3.51 ± 3.95 ± 8.68 ± 3.86 

Median (cm) -0.03 -0.03 0.07 -0.36 0.09 

MAD (cm) ± 0.26 ± 0.25 ± 0.34 ± 0.92 ± 0.60 

Kurtosis (-) 48.78 118.65 65.49 30.01 84.76 

Skewness (-) -1.77 -0.05 1.62 1.06 3.21 

Filtered comparison Café Cathedral Palace Houses Hotel 

Number of points 192,385 2,716,260 538,369 1,086,039 644,286 

Sample mean (cm) -0.04 -0.02 0.05 -0.32 0.06 

Standard deviation (cm) ± 0.31 ± 0.35 ± 0.44 ± 1.17 ± 0.91 

Median (cm) 0.00 -0.04 0.08 -0.31 0.07 

MAD (cm) ± 0.19 ± 0.20 ± 0.26 ± 0.71 ± 0.55 

Kurtosis (-) 3.39 3.79 3.42 3.67 3.31 

Skewness (-) -0.27 0.26 -0.23 -0.08 0.08 

Table 3.  Statistical results of the accuracy evaluation: MMS vs. Photogrammetry comparisons on the raw and filtered 

point clouds. 
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Finally, along with the numerical error assessment, the spatial 

error distribution is highly relevant for assessing the MMS 

performance in modelling architectural façades. For this reason, 

three colour-coded maps of signed distances are showed in 

Figure 10, where the scale ranges from - 0.01 m (blue) to     

0.01 m (red).  

The Cathedral dataset covers a large area: 65 m in width and up 

to 50 m in height. The corresponding error distribution (Figure 

10a) shows that the regions delivering the largest deviations are: 

 areas acquired from high distances and with high acquisition 

angles, such as the left portion of the façade and the upper 

part of the tower (see also the trajectory in Figure 3); 

 areas characterized by challenging materials (e.g. windows) 

and complex geometry (e.g. the main entrance). 

Furthermore the same error patterns, previously highlighted by 

the MMS-MMS comparisons (see Figure 8), are here present 

too. The diagonal stripes may be linked to the direction of the 

scanning acquisition or probably due to internal calibration 

errors. These bands are characterized by a rapid change of the 

errors, that may cause a degradation of the final 3D 

reconstruction.  

In the Palace dataset, beside a lack of data in the upper left 

corner of the building due to the presence of a large tree, 

systematic error stripes related to the LS orientation are found, 

together with an error increment in the tower (Figure 10b). The 

latter effect is again derived from the increased acquisition 

distance and scanning angle. 

Finally, an area of buildings characterized by different materials 

and a less detailed surface is analysed (Café, Houses and Hotel 

datasets). The bottom part is removed from the investigation 

due to the presence of obstructions, such as cars, vegetation, 

people, etc. In addition, all time-variant elements are removed 

as well. For instance, a small area of 33 m x 15 m is showed in 

Figure 10c, corresponding to the Hotel dataset. Higher errors 

are found, as it is confirmed by the robust error dispersion 

(MAD), which reaches up to ± 7.1 mm for the Houses dataset 

(Table 3). The causes of this behaviour are under study and may 

be related to the material properties. 

 

4.2.2 Comparison with the TLS reference data 

Graphical analyses carried out with the point clouds acquired in 

the Duomo square (Cathedral - Figure 11 - and Café datasets) 

prove that the Gaussian model doesn’t fit well with the acquired 

MMS raw data. Also in this case a filtering is necessary and a 

robust analysis of the MMS accuracy is then performed. The 

statistics reported in Table 4 agree with results achieved by 

adopting the photogrammetric model as reference.  

Raw comparison Cathedral Café 

Number of points 2,437,121 155,470 

Sample mean (cm) ± 1.68 ± 0.40 

Standard deviation (cm) 8.76 8.26 

Median (cm) ± 0.21 ± 0.22 

MAD (cm) 0.41 0.34 

Kurtosis (-) 46.12 25.44 

Skewness (-) 5.33 -0.84 

Filtered comparison Cathedral Café 

Number of points 1,876,985 122,113 

Sample mean (cm) 0.12 0.18 

Standard deviation (cm) ± 0.48 ± 0.35 

Median (cm) 0.17 0.18 

MAD (cm) ± 0.26 ± 0.23 

Kurtosis (-) 3.73 2.80 

Skewness (-) -0.01 -0.20 

Table 4. Statistical results of the accuracy evaluation: MMS vs. TLS for 
the square dataset on the raw and filtered point clouds.  

Raw comparison Garibaldi Belenzani 

Number of points 4,853,987 1,156,009 

Sample mean (cm) -0.24 -0.15 

Standard deviation (cm) ± 5.03 ± 5.56 

Median (cm) -0.12 -0.52 

MAD (cm) ± 0.28 ± 0.95 

Kurtosis (-) 77.99 50.58 

Skewness (-) -0.66 2.82 

Filtered comparison Garibaldi Belenzani 

Number of points 3,995,458 989,354 

Sample mean (cm) -0.13 -0.42 

Standard deviation (cm) ± 0.43 ± 1.26 

Median (cm) -0.10 -0.53 

MAD (cm) ± 0.21 ± 0.79 

Kurtosis (-) 4.08 3.38 

Skewness (-) -0.03 0.07 

Table 5. Statistical results of the accuracy evaluation: MMS vs. TLS for 

the street dataset on the raw and filtered point clouds.  

 

 
Figure 11. Colour-coded map of the comparison analysis between MMS 
and TLS data in the Cathedral dataset. The scale ranges from – 0.01 m 

(blue) to 0.01 m (red). 

 

Pre-filtering comparison Post-filtering comparison 

a)  b)  

Figure 12. Q-Q plots of the comparison MMS vs. TLS for the Garibaldi 

dataset. The quantiles of input sample (vertical axis) are plotted against 
the standard normal quantiles (horizontal axis). Pre-filtering (a) and 

post-filtering (b) data are shown. 

 
Figure 13. Colour-coded map of the comparison analysis between MMS 
and TLS data in the Garibaldi dataset. The scale ranges from – 0.01 m 

(blue) to 0.01 m (red). 
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The study is then completed by analysing the signed distances 

computed for the three façades on the narrow streets (Garibaldi, 

Cavour and Belenzani datasets). Due to the limited street width 

and significant height of the buildings, the acquisition angles are 

expected to be more severe here, deteriorating the metric 

accuracy of the resulting point clouds. Likewise all previous 

comparisons, Q-Q plots show a significant departure from 

normality, that is reduced after the 3σ filtering (Figure 12). 

Statistics are listed in Table 5; results achieved by the Cavour 

dataset are here omitted, since the significant amount of 

occlusions doesn’t allow a proper analysis. An average robust 

dispersion (MAD) of ± 5.0 mm is outlined, that reaches ± 7.4 

mm if a Gaussian estimation is derived. As expected, this value 

is higher than the one delivered by comparisons of the square 

datasets, but the gap is not statistically significant. 

Worth to note is finally the spatial error distribution, shown as 

colour-coded map of distances. For the Garibaldi dataset 

(Figure 13), it is still affected by the systematic diagonal stripes. 

Furthermore, the error increases quickly on the tower, whose 

height requires an unfavourable acquisition direction. 

 

 

5. CONCLUSIONS 

This paper strives to provide advanced statistical methods 

specifically designed to assess precision and accuracy of a 

MMS solution. The inter-comparison methodology here 

adopted is based on reference 3D imaging techniques (both 

active and passive sensors), whose uncertainty is predicted in 

advance, using manufacturer specifications and design 

equations. The MMS point clouds (Figure 14 – Duomo square 

dataset) are then compared against these reference ones and a 

statistical analysis of the resulting error distribution is 

performed.  

The suggested approach relies on a Gaussian assessment, 

followed by an outlier filtering process. Finally, non-parametric 

statistical models are applied, in order to achieve a robust 

estimation of the error dispersion. All datasets show a large lack 

of symmetry that leads to the conclusion that the standard 

normal parameters are not adequate to assess this type of data. 

The use of non-normal statistics gives thus a more appropriate 

description of the error population and yields results that meet 

what may be expected (a-priori errors) concerning the 

assessment of both precision and accuracy.  

The comparisons between point clouds acquired by the two 

laser scanners at the same epoch deliver a Gaussian estimation 

of the MAD in the order of ± 5.2 mm, which is consistent with 

the precision (1σ value) quoted by the MMS datasheet. The 

error increases up to ± 8.6 mm if the acquisitions in two 

different epochs are compared. These differences can be traced 

back to geo-referencing errors and surface-related problems. 

The former may be mitigated by including control point 

information within the post-processing adjustment. Depending 

on the final metric requirements, this issue should be adequately 

dealt with, especially if the MMS is used for accurately 

mapping historic city centres. Indeed this requires complex 

trajectories and multiple passes, thus demanding an 

optimization of the geo-referencing process.  

The accuracy assessment of one single point cloud highlights 

the good metric potentialities of the RIEGL mobile system. 

Errors estimated for the buildings in the Duomo square are 

characterized by an average dispersion of ± 5.9 mm (MMS vs. 

Photogrammetry) and ± 3.6 mm (MMS vs. TLS). These values 

are consistent with the uncertainty quoted by the MMS 

manufacturer (8 mm, 1σ). As expected, errors increase if MMS 

mapping is performed in narrow streets with high buildings and 

more challenging obstacles. However, the computed value of    

± 7.4 mm in such areas still represents an acceptable trade-off. 

 

 

 
Figure 14. Intensity (left) and elevation (right) map of the MMS data collected in the Duomo square of Trento (Italy). 
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