Volume XL-5/W2
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-5/W2, 659-662, 2013
https://doi.org/10.5194/isprsarchives-XL-5-W2-659-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-5/W2, 659-662, 2013
https://doi.org/10.5194/isprsarchives-XL-5-W2-659-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

  22 Jul 2013

22 Jul 2013

PHOTO REALISTIC 3D MODELING WITH UAV: GEDİK AHMET PASHA MOSQUE IN AFYONKARAHİSAR

M. Uysal1, A. S. Toprak2, and N. Polat1 M. Uysal et al.
  • 1Afyon Kocatepe Üniversitesi, Mühendislik Fakültesi, Harita Mühendisliği Bölümü, Turkey
  • 2Afyon Kocatepe Üniversitesi, Uzaktan Eğitim Meslek Yüksek Okulu, Turkey

Keywords: Cultural Heritage, Photogrammetry, 3D modelling, UAV

Abstract. Many of the cultural heritages in the world have been totally or partly destroyed by natural events and human activities such as earthquake, flood and fire until the present day. Cultural heritages are legacy for us as well; it is also a fiduciary for next generation. To deliver this fiduciary to the future generations, cultural heritages have to be protected and registered. There are different methods for applying this registry but Photogrammetry is the most accurate and rapid method. Photogrammetry enables us to registry cultural heritages and generating 3D photo-realistic models. Nowadays, 3D models are being used in various fields such as education and tourism. In registration of complex and high construction by Photogrammetry, there are some problems in data acquisition and processing. Especially for high construction's photographs, some additional equipment is required such as balloon and lifter. In recent years The Unmanned Aerial Vehicles (UAV) are commonly started to be used in different fields for different goals. In Photogrammetry, The UAVs are being used for particularly data acquisition. It is not always easy to capture data due to the situation of historical places and their neighbourhood. The use of UAVs for documentation of cultural heritage will make an important contribution.

The main goals of this study are to survey cultural heritages by Photogrammetry and to investigate the potential of UAVs in 3D modelling. In this purpose we surveyed Gedik Ahmet Pasha Mosque photogrammetricly by UAV and will produce photorealistic 3D model. Gedik Ahmet Pasha, The Grand Vizier of Fatih Sultan Mehmet, has been in Afyonkarahisar during the campaign to Karaman between the years of 1472–1473. He wanted Architect Ayaz Agha to build a complex of Bathhouse, Mosque and a Madrasah here, Afyon, due to admiration of this city. Gedik Ahmet Pasha Mosque is in the centre of this complex. Gedik Ahmet Pasha Mosque is popularly known as Imaret Mosque among the people of Afyon. Gedik Ahmet Pasha Complex is a foundation. For this reason all its expenses are recorded. Furthermore renovations of all buildings in this complex are placed on them with a inscription. According to records and inscriptions The Imaret Mosque has been restored several times. The two significant of these restorations were made after the earthquakes in 1668 and 1792. Lastly, after the renewing lead plating of domes in 1969, the Mosque has gotten its current final situation. The dimensions of Mosque are 29.20 x 35.40 in meter and it has built by a plan of inverse capital (T). There are two domes covering the main worship and it is one of the most important examples of Ottoman architecture with three of dome both side in direction of east to west. At the north side of the Mosque, there is a place for last congregations with five domes. Minaret is at the north-east side of the mosque. It has got one balcony (surrounding the minaret) and has been structured by cut stone with a shape of fluting. It has been covered by dark blue tile between these flutings. The main gate of mosque is made of pen inlaid marble.

It is aimed to survey Gedik Ahmet Pasha Mosque photogrammetricly and to model it in 3D photo-realistic. In this study, South NTS-352 Total Station is used to constitute a closed polygon with 8 point. We used 350 ground control point in the field study. It is made levelling to measure elevation of polygon points. For photographs, we used Canon A 180 camera and UAV. Photomodeler software is used to process both camera's and UAV's photographs independently. The facades of mosque are derived and all 3D models of Mosque were merged. This merged model is covered with high resolution photographs for obtaining 3D photo-realistic models of Gedik Ahmet Pasha Mosque.