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ABSTRACT: 

 

Spatial relations among simple features can be used to characterize complex geospatial features. These spatial relations are often 

represented using linguistic terms such as near, which have inherent vagueness and imprecision. Fuzzy logic can be used to 

modeling fuzziness of the terms. Once simple features are extracted from remote sensing imagery, degree of satisfaction of spatial 

relations among these simple features can be derived to detect complex features. The derivation process can be performed in a 

distributed service environment, which benefits Earth science society in the last decade. Workflow-based service can provide on-

demand uncertainty-aware discovery of complex features in a distributed environment. A use case on the complex facility detection 

illustrates the applicability of the fuzzy logic-supported service-oriented approach. 

 

1. INTRODUCTION 

More than 150 Earth observation satellites are currently on 

orbits measuring the state of the Earth (Tatem, 2008). Remote 

sensing data has gained tremendous importance in various 

application domains such as geospatial feature update and 

WMD (Weapon of Mass Destruction) proliferation site 

detection in safeguard applications. The overwhelming volume 

of routine image acquisition has greatly outpaced the increase in 

the capacity of manual image interpretation by intelligence 

analysts. Automated methods or intelligent systems are needed 

to reduce the workload of human intelligence analysts and 

increase the possibility of prompt detection of interested 

geospatial features. 

 

Complex geospatial features are spatially composed of 

elementary (simple) ground features. For example, a nuclear 

facility consists of a group of ground features, e.g., buildings for 

hosting fuel concentration machines, cooling towers, 

transportation roads, and fences. Such spatial semantics, or 

named spatial patterns (Yang et al., 2010, 2011) can be used to 

discover complex geospatial features from imagery. There are 

substantial studies on extraction of simple features, such as 

buildings and roads, from remotely-sensed data (Gruen et al., 

1995; Baltsavias, 2004; Awrangjeb et al., 2010). The research 

on automatic discovery of complex geospatial features is still 

rather understudied. Our previous work suggests a “two steps of 

feature detection” approach, with step 1 being to identify the 

location and type of elementary ground features (such as 

buildings and roads) from high-resolution imagery, which has 

well-developed technologies, and step 2 being to extract high-

level semantic information (such as nuclear fuel concentration 

sites and manufacturing factory facilities) by discovering 

compound (complex) ground features from spatial relationships 

among the elementary features (Yue et al., 2012). We have 

investigated how complex feature semantics, in particular 

spatial relations among simple features, can be exploited to 

guide workflow modeling in a service computing environment.  

 

However, imprecision and uncertainty associated with spatial 

relations are not addressed in the workflow-based approach. For 

example, when the spatial pattern specifies that containment 

buildings are near cooling towers, the linguistic term “near” can 

be denoted as “fuzzy” relationships due to its inherent 

vagueness and imprecision associated with natural language 

expressions (Bloch, 2005; Hudelot et al., 2008). The degrees to 

which these statements hold can be determined by fuzzy 

membership functions. The work described in this paper is an 

extension of the previous work by introducing the fuzzy logic 

into the service environment to allow the representation and 

reasoning of uncertainty and imprecision. 

 

In this paper, “fuzzy” relations are fuzzified using specialized 

services that refer to specific fuzzy membership functions. This 

provides flexibility of using different membership functions by 

on-demand integration of services. The degree of satisfaction of 

each spatial relation is recorded for each simple feature. Finally, 

the degree of a feature to satisfy those constraints is determined 

using a conjunctive manner (i.e. a t-norm) (Zimmermann, 2001) 

of degrees for those relations, which is also implemented as a 

service. These services are chained as workflows. They are 

reusable and can provide on-demand uncertainty-aware 

discovery of complex features in a distributed environment. A 

use case on the complex facility detection illustrates the 

applicability of the service-oriented approach. 

 

2. WORKFLOWS FOR DETECTION OF COMPLEX 

GEOSPATIAL FEATURES  

The rationale in designing workflows is that the sites of 

complex features can be identified by one type of its elementary 

features (e.g., building) following the specific spatial 
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relationships with other types of elementary features. Given the 

assumption that all elementary features (e.g., building, roads, 

and ponds) can be extracted from images, discovering complex 

features on images can be decomposed into a series of steps 

computing spatial relations among elementary ground features 

in a specific area. The computational steps are formalized using 

workflows, where each step is implemented by a spatial relation 

computation service. 

 

 
 

Figure 1.  Example of a complex feature 

 

Taking a nuclear power plant (NPP) as an example, it includes 

the following parts: containment building, cooling tower, pond, 

and switch yard (Figure 1). They follow the near relation. In the 

workflow approach, the conjunctions of a set of spatial relations 

in characterizing the spatial pattern of a complex feature can be 

formalized through workflow descriptions, as shown in Figure 

2a. If we define services for implementing each binary spatial 

relation, then a service chain to discover possible NPPs, called a 

workflow, can be represented as follows: 

 

 

FeatureBuildingInNPP = service_near(service_near( 

service_near(ContainmentBuilding, CoolingTower),  (1) 

 Pond), SwitchYard) 

 

 

where Feature represents the member features of the complex 

features and the service’s are a set of spatial analysis services 

that determine which features in the first type follow specific 

relations to features in the second type. The functional 

representation of the workflow implies that when elementary 

features are generated from remote sensing images, the spatial 

analysis services with specific spatial operators need only be 

defined appropriately to compute spatial relations in order to 

find the sites of the complex features. However, relations such 

as near are vague. In a crisp approach, “fuzzy” relations could 

be further refined using unambiguous primitive operators. 

Primitive relations such as those stated in the OGC simple 

feature specification are well defined. It follows the nine-

intersection topological relationship models (Egenhofer & 

Herring, 1990), and includes the following primitive 

relationships (operators): equals, disjoint, intersects, touches, 

crosses, within, contains, and overlaps (Herring, 2011). Figure 

2b shows the final workflow generated following a crisp 

approach. Each analysis step in the workflow is implemented as 

a service in a Web environment. Such a service-oriented Web 

environment allows dynamic discovery of geoprocessing 

services as well as feature inputs to service chains in supporting 

the on-demand detection of complex features. 

 

 
 

Figure 2. Workflow formulation – a crisp approach 

 

3. MODELLING FUZZINESS OF SPATIAL 

RELATIONS 

Rather than a crisp approach that uses a sharp distance to 

determine the near relation, we can support fuzzy 

representations by representing the imprecision associated with 

definitions of spatial relations. Fuzzy logic, in particular, the 

theory of fuzzy sets, allows to model spatial relations using a 

partial degree of membership, i.e. the membership is a matter of 

degree. There are various ways on fuzzy representation of 

spatial relations, such as fuzzy number, interval, and angle 

histogram (Hudelot et al., 2008). The choice of them depends 

on the specific application context.  

 

Assuming the spatial pattern for the NPP requires that 

containment building is 500 meters away from cooling tower 

but not more than 1000 meters. The elementary features will not 

be considered when the distance (dcc) between containment 

building and cooling tower is below 100 meters or beyond 2000 

meters. The membership function for the near relation between 

containment building and cooling tower can be defined as 

follows (Figure 3i). 

 

 

 µs(dcc) = 0 for dcc ≤ 50 

 µs(dcc) = [0, 1] for 50 ≤ dcc ≤ 200 

 µs(dcc) = 1 for 200 ≤ dcc ≤ 500                             (2) 

 µs(dcc) = [0, 1]  for 500 ≤ dcc ≤ 1000 

 µs(dcc) = 0 for dcc ≥ 1000 

 

 

Similary, we could define different intervals for modeling fuzzy 

relations between building and pond (Figure 3ii), as well as 

building and switch yard (Figure 3iii). They are linked to 
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trapezoidal fuzzy sets shown in Figure 3. Once variables such as 

a, b, c, and d, are defined for intervals, a generalized form of the 

trapezoidal membership function for µs(dcc) is shown in Figure 

3.  

Assuming the universe of discourse of dcc is denoted as DCC, a 

fuzzy set S in DCC could then be defined as a set of pairs. 

 

 S = { dcc, µs(dcc) | dcc  DCC }                                     (3)     

 

When doing the fuzzy inference, the input is a crisp value 

calculated using the distance computing operator from GIS. The 

output is a fuzzy degree of the membership in the fuzzy set. The 

degree is usually a real number between 0 and 1.   

 

 
 

Figure 3.  Trapezoidal fuzzy sets 

 

4. SUPPORTING FUZZY LOGIC IN A GEOSPATIAL 

SERVICE ENVIRONMENT 

A geospatial service environment follows the component-based 

software engineering principle. Individual geospatial services 

are reusable and loosely-coupled. They can be plugged in 

flexibly at each step of geoprocessing workflows to support on-

demand feature discovery. This provides possibilities to use 

different services and workflows for feature discovery. The 

degree of satisfaction of each spatial relation could be 

determined by combining geospatial distance computing 

services and specialized services that can map distances to 

degrees according to special membership functions.  

 

The degree of satisfaction of multiple spatial relations is a 

conjunctive combination of those degrees using a t-norm. A t-

norm (triangular norm) is an intersection or conjunction of two 

fuzzy sets (Zimmermann, 2001). It could be implemented using 

different operators such as minimum or product t-norms. Thus 

the uncertainty of complex features can be determined by a t-

norm computation service that calculates a conjunctive degree 

of one type of its elementary features (e.g., building) satisfying 

the specific spatial relationships with other types of elementary 

features. Figure 4 shows a service chain to support uncertainty-

aware discovery of complex features. It connects distance 

analysis, membership function, and t-norm services together to 

generate a list of features, each of which has its uncertainty 

value recorded. 

 

 
 

Figure 4.  An uncertainty-aware service chain for discovering 

complex features 

 

Although the paper assumes that elementary features are already 

generated from images, it is also possible to add degree of 

membership to a type of elementary features. For example, if 

the percentage of buildings detected from images by a specific 

algorithm is 80 percent, the degree of a feature to be a building 

could be 0.8. The degree can also join the t-norm operation for 

a more comprehensive uncertainty evaluation. 

 

5. WALK THROUGH EXAMPLE 

We use a NPP facility as an example to help demonstrate the 

approach. Assuming elementary features are already extracted 

from the image, there are four types of elementary features (i.e., 

building, cooling tower, pond, and switch yard) in Figure 5. 

They feed as inputs to the workflow in Section IV. Figure 5a 

shows the distance (the field NEAR_DIST) from each building 

to its nearest cooling tower. The field IN_FID is the feature ID 

of the building. The field NEAR_FID is the feature ID of the 

cooling tower. The field BC_DEGREE is the fuzzy degree 

using fuzzy sets defined in Section III. Similarly, Figure 5b and 

5c show the analysis results between building and pond, as well 

as building and switch yard. The whole process could be 

automated using the BPEL workflow in Figure 5d. 

 

Once all fuzzy degrees are available, Figure 5e shows the 

analysis result using the product t-norm, i.e. the multiplicative 

conjunction. Figure 5f labels all the buildings using the feature 

ID. The feature IDs for buildings with t-norm values 1 or near 1 

are 0, 2, 3, 6, 7, 8, 9, and 11.  They could be containment 

buildings. Buildings with ID 15, 16, and 10 have low t-norm 

values, since they are too close to ponds. Buildings with ID 4, 5, 

12, 13, 14, 17, and 18 are either too close to the cooling tower 

or switch yard. The feature with ID 19 is too far away from 

ponds. So these buildings are less possible to be containment 

buildings. 
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Figure 5.  The workflow for the NPP case 

 

The analysis results could be refined by providing more 

constraints on input features. For example, not all buildings are 

necessary to be analyzed. A containment building is cylindrical 

and has a dome-shaped roof. Such characteristics could be used 

as constraints to limit input buildings to be analyzed. If such 

constraints are added, the detection results from the fuzzy 

analysis could be improved in precision. 

 

6. CONCLUSION 

This paper presents a fuzzy logic-supported approach for 

detection of complex geospatial features in a geospatial service 

environment. Both fuzzy membership functions and t-norm 

operators can be provided as services and incorporated into 

workflows on demand to automate the detection process. The 

fuzzy degree conveyed with features help address uncertainty in 

the feature detection from remote sensing imagery. Future work 

will investigate how fuzzy logic could be combined with 

geospatial ontologies to automate the workflow generation and 

service chaining. 
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