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ABSTRACT: 
Unmanned aerial vehicles (UAV) have become an interesting and active research topic for photogrammetry. Current research is 
based on images acquired by a UAV, which have a high ground resolution and good spectral and radiometric resolution, due to the 
low flight altitudes combined with a high resolution camera. UAV image flights are also cost efficient and have become attractive for 
many applications including change detection in small scale areas. 
 
One of the main problems preventing full automation of data processing of UAV imagery is the degradation effect of blur caused by 
camera movement during image acquisition. This can be caused by the normal flight movement of the UAV as well as strong winds, 
turbulence or sudden operator inputs. This blur disturbs the visual analysis and interpretation of the data, causes errors and can 
degrade the accuracy in automatic photogrammetric processing algorithms. 
 
The aim of this research is to develop a blur correction method to deblur UAV images. Deblurring of images is a widely researched 
topic and often based on the Wiener or Richardson-Lucy deconvolution, which require precise knowledge of both the blur path and 
extent. Even with knowledge about the blur kernel, the correction causes errors such as ringing, and the deblurred image appears 
“muddy” and not completely sharp. In the study reported in this paper, overlapping images are used to support the deblurring 
process, which is advantageous. An algorithm based on the Fourier transformation is presented. This works well in flat areas, but the 
need for geometrically correct sharp images may limit the application. Deblurring images needs to focus on geometric correct 
deblurring to assure geometric correct measurements. 
 

                                                                 
*  Corresponding author. 
 

1. INTRODUCTION 

Constraints enforced on the acquisition of photographs for 
photogrammetry normally include a stable camera position and 
a stationary object. Unfortunately, lightweight small scale 
unmanned aerial vehicles (UAV) rarely provide a stable camera 
position. UAVs are easily affected by wind, gusts, turbulence or 
sudden operator inputs. However, their good manoeuvrability 
and flight path control combined with endurance, flight range 
and low cost make UAVs applicable for a range of different 
tasks (Eisenbeiß, 2009). The limited payload, regulatory 
restrictions and vulnerability of the UAV platforms encourage 
the use of low cost sensors, which often dictates the use of 
consumer grade cameras (Eisenbeiß, 2011). Unfortunately, the 
problem remains that the high spatial resolution of an image is 
often degraded due to motion blur. Since optical blur can be 
reduced using automatic focusing methods, motion blur remains 
a challenge. Resolving motion blur is an important and often 
researched topic in signal and image processing. The focus of 
many deblurring methods is often on spectral, radiometrical and 
geometrical deconvolution, which requires extensive 
calculations. 
 
1.1 Aims and Objectives 

Photogrammetry is defined as finding ‘position, orientation, 
shape and size of objects from pictures’ (Kraus, 2007). This is 
achieved by measuring coordinates of objects appearing in 
images. These measurements are mostly based on edge 
detection in the images because edges can often be detected and 
identified in overlapping images. In blurred images edges can 

disappear, change their position or become difficult to identify 
due to the degrading effect of motion blur (Fig 1). 
Most methods use one blur kernel which represents the camera 
path during image acquisition. Using this general blur kernel for 
all pixels in the image is inaccurate because objects with a short 
camera to object distance are blurred more than objects further 
away. Also sensor rotation can change the blur kernel as the 
kernel is shorter for objects close to the rotation axis and larger 

    

    (a)  (b) 

   

    (c)  (d) 
 

Figure 1. Example of a photogrammetric target. (a) Sharp image 
without any camera movement during image exposure. (b) The 
target is easy identifiable due to the well-defined edge between 
black and white. (c) Image blurred due to motion during image 
exposure. (d) The target is difficult to identify due to the 
difficulty to define the target outline. 
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for objects far away from the rotation axis. This needs to be 
considered for generating a precise deblurring method capable 
of working in 3D. 
This paper aims to analyse how much blur influences the 
detection of image overlap using image processing. 
Furthermore, image deblurring approaches suitable for 
photogrammetric purposes will be examined and discussed. 
 

2. RELATED WORK 

Aerial photogrammetry uses object information in images 
acquired by airborne platforms ranging from aircrafts to 
balloons. A platform recently developed and increasingly 
popular for image flights are lightweight UAVs, which are 
vulnerable to gusts, turbulence and are sensitive to operator 
inputs. 
For a successful image flight it is necessary to carefully prepare 
the flight plan beforehand. To provide appropriate image 
geometry for 3D measurements a recommended image overlap 
of 60% along track and 20% across track should be used (Kraus 
2004, Luhmann 2006). To calculate precise 3D coordinates for 
an object point, it is necessary to precisely measure the image 
coordinates in at least two images (Kraus, 2004). Additionally 
the exterior orientation and interior parameter of the camera are 
required. These parameters are required to fulfil the collinearity 
equation, which enables the 3D coordinates of points to be 
determined (Luhmann, 2006). 
To carry out point measurements in multiple images 
automatically, feature points (signalised and unsignalised) need 
to be identified across frames. This is today based on the Scale-
Invariant Feature Transform (SIFT), Speed-Up Robust Features 
(SURF) or similar algorithms. These algorithms detect suitable 
candidate features in the images, which are invariant to scaling, 
translation and rotation (Lowe, 2004, Bay et al., 2006). Similar 
features detected in two overlapping images can be referenced 
between them using least squares matching or other similar 
methods (Brown, 1992). Due to blur the same features can 
appear differently in the images and matching these becomes 
increasingly difficult. Even measuring well defined targets 
using automatic measurement methods and matching them 
between two images is influenced or even impossible (Sieberth 
et al., unpublished). These difficulties suggest the need to 
explain the influence of blur in photogrammetric processes. 
There are various methods for image deblurring which have 
been published over the last decades. Image deblurring 
approaches can be separated into blind and non-blind 
deconvolution. Non-blind image deconvolution uses a-priori 
knowledge about the blur in the image. Blind deconvolution has 
only the blurred image and no additional information but the 
task of deriving a sharp image remains. Wiener deconvolution 
(Wiener, 1949) and Richardson-Lucy deconvolution 
(Richardson, 1972, Lucy, 1974) are blind deconvolution 
methods proposed decades ago and remain popular because 
they are both simple and efficient. A significant problem that 
occurs using these methods are ringing artefacts at steep edges. 
More advanced methods are often based on a probability 
calculation, which is also used by Wiener and Richardson-Lucy 
deconvolution. They aim to improve deblurring and the 
capability to work reliably, even with noise in the blurred image 
(Shan et al, 2008). 
Non-blind image deconvolution methods can be carried out in 
various ways and requiring additional knowledge. The 
additional information can be gained through other overlapping  
images (Agrawal, 2012), precise IMU measurements (Joshi, 
2008), video cameras (Tai et al., 2008), fluttering shutters 
(Raskar et al., 2006) or colour channel dependent exposure 

times (Lelégard, 2010). The main aim of these methods is to 
establish an appropriate blur kernel, which can be used by 
established deblurring algorithms. 
 

3. METHOD DEVELOPMENT 

3.1 Feature Detection 

To analyse how critical motion blur influences feature 
detection, images with precisely known blur were generated. 
Blurred images were acquired using a Nikon D80 SLR camera, 
and a shaking table using a methodology described more fully 
in a paper by Sieberth et al. (2013). Briefly, this involved 
generating four images with different camera displacements 
each of between 0 to 1 mm. Then these images were processed 
using the SURF function provided by OpenCV 
(SurfFeatureDetector), to detect feature points in the images 
(OpenCV, 2014). In the following step a “brute force matching 
method” (BFMatcher) was used to connect detected feature 
points. The connection was made between the feature points in 
the sharp image and each of the blurred images. The connection 
lines between sharp and blurred image should be parallel as 
shown in Figure 2 (a). Many of the returned matches were 
incorrect and additional filtering of the matches was required. 
Figure 2 shows the sharp image on the left and a blurred image 
on the right, with blue lines show the connection between sharp 
and blurred feature points. Figure 2 demonstrates that 
increasing camera displacement influences both the number of 
feature points and correctness of feature matching. In (b) and (c) 
the connections are converging on a few features which must be 
incorrect because the blurred image is made with the same 
orientation and from the same position as the sharp image and 
shows the same scene. Filtering out the incorrect matches can 
be done using an approximate position and orientation of the 
images. In real UAV images this can be extracted from recorded 
GNSS and IMU data. Using the flight altitude and the camera 
perspective centre for both images the offset between the 
images can be calculated. By using this method it can be 

(a)

(b)

(c) 

Figure 2. Influence of image blur on automatic feature detection 
and connection using SURF and brute force matching. Left 
image is a sharp reference image. Blue lines and circles indicate 
feature points (a) Right image without camera displacement. (b) 
Right image with 0.377 mm camera displacement. (c) Right 
image with 1.028 mm camera displacement. 
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estimated at which position the matched feature should be in the 
blurred image. If the matched feature is found at a different 
position, this match can be assumed to be incorrect and ignored. 
If the feature was matched at the right position, the orientation 
of the feature has to match with the orientation given by the 
IMU. However, it is important to recognise that GNSS and IMU 
can only provide an approximate value for the translation and 
rotation of the images. This problem can be tackled by defining 
an appropriate threshold for the discrepancy between calculated 
and actual position, rotation and scale of the matched feature. 
Figure 3 demonstrates the number of acceptably matched 
feature points, which is significantly less than the total matches 
made. These matches can be considered correct as the 
connection lines between sharp and blurred image are parallel. 
Even with this small number of matches it is still possible to 
calculate transformation parameters to detect the relative 
translation and rotation of sharp and blurred image. These 
transformation parameters are necessary to define the image 
relationship required to carry out standard photogrammetric 
measurements. If it is not possible to match enough features 
between the sharp and blurred image, feature detection can 
perhaps be improved by enhancing the blurred image. 
 
3.1.1 Improving Feature Detection 
Enhancing the blurred image can result in improved results for 
image processing and this does not require additional 
information. A fast, easy and reliable method to achieve this 
was investigated using an “Unsharp Mask Filter”. This 
approach blurs the input image and then subtracts the input 

image from the result (GIMP, 2014). An enhanced image can be 
generated, which appears sharper than the original input image 
and with stronger contrast (Fig 4). Figure 4 represents a 
Siemens star to visualise the blur. Figure 4 (a) demonstrates that 
before enhancement it is easily possible to see the blur, 
especially in the centre of the star.  Figure 4 (b) demonstrates 
that after enhancement the image appears sharper, but at the 
centre of the star it is possible to see that blur remains. The 
apparent higher contrast gives the impression of sharpness. 
However, with higher contrast it is possible that feature 
detection algorithms find feature points easier.  
 
3.2 Image Deblurring 

The effectiveness of initial feature detection, controls which 
image deblurring technique is best used. If the overlap 
calculation is successful, the information provided by the 
overlapping image can be used for deblurring. If the overlap is 
not successfully calculated, deblurring requires a different 
approach. 
 
3.2.1 Fourier Domain Approach 
 
A Fourier transformation can be adopted if points are 
successfully matched. As all images are taken from a moving 
platform it can be assumed that all images contain a certain 
amount of blur due to forward motion. However, some contain 
significantly more blur due to gusts, turbulences or operator 
inputs. If there is an overlap between a sharp and blurred image, 
then the overlap area in the blurred image can be deblurred. 
In the first step the overlapping areas need to be transformed so 
that they have the same rotation, translation scale and shear. 
The parameters for this can be based on the results of SURF 
matching or manual feature detection and matching. After this 
the deblurring process can commence. 
The frequency domain of the overlap is calculated for both 
images using a discrete Fourier transformation (DFT). The 
frequency domain of the more blurred image contains less high 
frequency elements than the sharper image. As both images 
show the same area, deblurring can be conducted by integrating 
the high frequencies of the sharper image into the frequency 
domain of the blurred image. 
Transforming the frequency domain representation of the 
blurred image, (now enhanced with the high frequencies of the 
sharper image,) back to the spatial domain, then generates a less 
blurry image. As DFT is only possible for grey scale images it is 
necessary to either correct all channels separately or calculate a 
single grey scale representation. If a one channel grey scale 
image is used a final step transferring this back to a three 
channel colour image is required. The approach used is based 

(a)

(b)

(c) 

Figure 3. Results of automatic feature detection and connection 
using SURF and Brute Force matching after filtering out 
incorrect matches using sensor position. Left image is a sharp 
reference image. Blue lines and circles indicate connected 
feature points, green indicate detected feature points, red 
indicates image overlap. (a) Right image without camera 
displacement. (b) Right image with 0.377 mm camera 
displacement. (c) Right image with 1.028 mm camera 
displacement. 
 

       
(a)              (b) 

Figure 4. Figure (a) shows the blurred image before 
enhancement. (b) represents image (a) after enhancement. The 
image appears with stronger contrast but not sharp. 
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on the idea of pan sharpening by replacing the intensity channel 
of an image with the deblurred image (Laben, 2000).  
After the deblurring process, the overlapping area needs to be 
transformed using an appropriate rotation, translation, scale and 
shear. As this deblurring is only possible for the overlapping 
area and not the complete image, the deblurred area of the 
image needs to replace the overlapping area in the blurred 
image. The result is a partially deblurred image (Fig 5). 
 
3.2.2 Edge Correction Approach 
 
Another approach developed in this study focused on correcting 
edges in images, which represent an important visual 
component. Edges indicate if an image is blurred or sharp 
(Chen, 2011) and help to identify how much an image is 
blurred. Also point spread functions and blur kernels can be 
calculated, based on edges or are part of additional information 
provided in other ways. 
Knowing this, the image can be reduced to its edges by using a 
standard edge detection algorithm like a Laplace filter or 
similar. In a blurred image, the edges are displaced from their 
‘sharp’ position due to motion of the camera during exposure 
(Fig 6 (b)). Also the intensity of the detected edge in a blurred 
image is much less than in a sharp image. This shift can be 
reversed by knowing the blur kernel so that the edge can be 
shifted back to its original position (Fig 6 (c)). How large the 
blur kernel is can be determined using overlapping images, 
IMU data or outputs of point spread calculation methods. 
Figure 6 (a) presents edges detected in a sharp image and Figure 
6 (b) how the edges appear in a blurred image. The blurred 
edges are not round but oval. Figure 6 (c) is a re-sharpened 
image using the edge shift approach. It is possible to identify 
that the targets in the re-sharpened image are now circular in 
shape. Additionally, it is possible for the human brain to 
interpret elements of the original code. The errors which appear 
in this edge corrected image will be discussed further in the 
results section (4.2.2). 
 

4. RESULTS AND DISCUSSION 

The accuracy of the non-blind deconvolution methods used here 
depends upon which algorithm is used and the quality of the 
additional information. This additional information is 
dependent upon the feature detection and matching which is 
itself influenced by blur. It is important to reassess both, the 
feature detection and deblurring approaches used. 

 
4.1 Feature Detection 

As expected, it was found that with increasing blur the total 
number of detected feature points decreases (Table 1). For 
example, a camera displacement of 0.377 mm during exposure, 
results in just 72% of the original feature points being detected. 
Human hand jitter has frequencies of 2-10 Hz with an amplitude 
of up to 1 mm (Stiles, 1976) which is a likely cause for much 
motion and has to be considered as a significant influence. 
The results after filtering out the incorrect matches using IMU 
and GNSS information, show that blur has an extreme influence 
on matching methods. Only a fraction of features were correctly 
connected between sharp and blurred image. In the case of a 
blurred image with a 1 mm displaced camera, only 47 matches 
were accepted (Table 1). 
 
Camera 
displacement [mm] 

Detected Feature 
Points 

Accepted Feature 
Points after Filtering 

0.0 12214 (100%) 12214 (100%) 
0.377 8847 (72%) 1524 (17%) 
0.529 7370 (60%) 224 (3%) 
1.028 2645 (22%) 47 (1.8%) 
Table 1. Impact of increasing image blur and feature detection. 
With increasing image blur the number of detected and accepted 
feature points reduces rapidly. 
 
The feature detection shows that blur influences image 
processing, which confirms findings made by Sieberth et al. 
(unpublished). The more an image is blurred the fewer features 
are detected using SURF and the number of matched features 
becomes increasingly incorrect. However, the test images were 
taken with a short camera to object distance which questions the 
applicability for larger camera to object distances, which are 
around 100 m for typical UAV image flights. Therefore the 
camera displacement for a typical UAV image flight should be 
calculated. Normal UAV flight speed is supposed to be 54 km/h 
and an image exposure time of 1/400 s (used by Grenzdörffer et. 
al (2012)), implies that the camera should experience a 
displacement of 37 mm during exposure. This is 70 times more 

  
Figure 5. A deblurred patch is presented in the centre of the 
image. It is possible to see the photogrammetric targets are 
sharper and better to read and the boreholes in the ceiling panels 
are good to see. The inset shows a comparison between the 
deblurred upper part and the bottom part of a target which 
contains a camera displacement of 1mm and visualizes how 
effective the deblurring is. 

   

 (a)              (b) 
 

 

   (c) 
Figure 6. Figure (a) represents edges of circular targets in a 
sharp image. (b) shows the same edges in a blurred image. They 
do not appear as circles any longer. (c) is a preliminary result of 
the deblurring process based on the blurred edges (b) and 
knowledge about the blur path. 
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than in the laboratory test with a displacement of 0.53 mm. The 
camera to object distances in the lab test was 1.8 m, 55 times 
shorter than normal UAV flight altitude of 100 m. The ratios 
show that the lab tests are actually comparable with a typical 
UAV image flight because the camera displacement is as many 
times larger as the camera to object distance. Furthermore, this 
calculation does not consider that angular movements of UAVs 
which are much faster and cause more extensive image blur 
(Grenzdörffer et al., 2012). The test images also provide a 
texture with high contrast enabling SURF to find many feature 
points. SURF is the recommended method for UAV images 
(Gülch, 2012) but will experience problems with blurry images 
of low contrast areas (e.g. grass). Additionally, image overlap in 
the test image is nearly 100% but will be around only 60% in 
real scenes. This reduced overlap will reduce the feature points 
which are available in both images and reduces the chance for 
correct calculation of transformation parameters. In addition, 
the laboratory images do contain only linear movement without 
angular rotations. This simplifies the feature matching which 
will be significantly more difficult with more challenging 
camera displacements and rotations.  
Enhancing the blurred image certainly improves the image. 
Instead of only 2645 features, twice as many features can be 
found and matched in an image with as much as 1 mm camera 
displacement. Out of these 5844 matched features 91 matches 
were accepted as correct, twice as many as before. This shows, 
that fast and easy to compute image enhancements can improve 
significantly the image quality necessary for photogrammetry. 
 
4.2 Deblurring 

Even if blur is insufficient to prevent successful image 
matching, it may be too severe for accurate detection and 
identification of photogrammetric targets and ground control 
points. A method to improve the image quality through 
“deblurring” is therefore valuable. Two approaches have been 
investigated. 
 
4.2.1 Fourier Approach 
 
The Fourier approach (Section 3.2.1) inserts high frequencies 
derived from a sharp image into the blurred and appeared 
successful (Fig 5). Figure 5 shows that photogrammetric targets 
in the deblurred patch can be identified easily and in 
comparison to targets in the remaining blurred part of the 
image, they are now sharp and have high contrast. A deblurred 
image for feature detection and matching is presented in Figure 
7. The blurred image had a camera displacement of 0.53 mm. 
After deblurring, SURF returns 11725 feature points. After 
matching and filtering incorrect features, 1124 were accepted as 
correct. This is five times more than with the original blurred 
image. 

However, the approach using Fourier transformation is only 
applicable for flat areas, which do not exhibit significant height 
differences. In cases of significant height variations, like high 
rise buildings, tall trees or opencast pits, offsets will be 
generated due to relief displacement (Campbell and Wynne, 
2012). A way to solve this is by using many small image 
patches, which take account for different heights. 
Adding frequencies to a blurred image also causes some noise 
after transforming from the frequency back to the spatial 
domain. In the subsequent step of image transformation 
necessary to regain the correct position, rotation, shear and 
scale, the interpolation of the correct pixel intensities for the 
rectified image can cause a ‘blurring’ effect. Furthermore, 
deblurring using overlapping images acquired from a moving 
platform will only be as good as the ‘sharper’ image. If the 
overlapping image is completely sharp then the deblurred 
images will be sharp. If the overlapping image is slightly blurry 
the deblurred image will be blurry too because the critical high 
frequencies are missing and cannot be integrated to the blurred 
image. A complete deblurring can only be generated if there is a 
perfectly sharp image containing all high frequencies. 
From a photogrammetric point of view this approach achieves 
images suitable for further processing. However, it cannot be 
guaranteed that subsequent measurements in the deblurred 
image are of high or even sub-pixel accuracy. Due to the 
geometric image transformation, errors can be introduced which 
depend on the accuracy of the transformation parameters. This 
shows the demand for a geometric correct approach, which 
guarantees correct photogrammetric measurements. This could 
be possible by using the edge shift approach. 
 
4.2.2 Edge Shifting Approach 
 
The edge shifting approach is a novel method developed here 
and shows promising results. The main problem is the disregard 
of colour information, which needs to be restored afterwards. 
This should be acceptable as the colour just needs to refill the 
shapes generated by the shifted edges. A more significant 
problem are the many special cases and exceptions, which can 
occur. Handling these exceptions is connected with a range of 
difficulties. It is possible that the shifting process generate holes 
in the shapes (Figure 6 (c)). This is caused by shifting two edges 
apart from one another and effectively ‘ripping’ them apart. 
Furthermore, edges which have completely disappeared cannot 
be recovered. The complexity of real images with different edge 
intensities, directions and blur length is much higher than in this 
high contrast test image. 
However, deblurring of high contrast areas can also be usable 
for aerial images because aerial photogrammetric targets 
normally provide high contrast. It should be possible to achieve 
edge shifting with photogrammetric targets and get acceptable 
results which can be then accurately measured. Subsequent 
target measurements can return sub-pixel accuracies due to a 
sub-pixel precise shifting process. Furthermore, it might be 
possible to incorporate different blur in different positions of an 
image by calculating localised blur kernels. This would be 
necessary for blurred objects close to the camera, which appear 
more blurred compared to objects further away from the camera. 
Theoretically this approach is achievable and does not consume 
too much computational power. However, this approach is very 
complex due to the complexity and exceptions for shifting 
edges. It will be difficult to implement such an approach. 
 

  
Figure 7. SURF feature detection applied on a deblurred image. 
On the right a sharp image. On the left a deblurred image which 
had a camera displacement of 0.53 mm.  
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5. CONCLUSION 

This study has shown that image blur caused by camera 
displacement during image exposure has a clear and significant 
influence on photogrammetric processing. Successful feature 
detection and matching becomes increasingly difficult with 
increasing image blur. Enhancing a blurred image might 
improve feature detection at low computational cost and is easy 
to implement. Reversing image blur in a photogrammetrically 
correct and precise way is more difficult and cannot be solved 
with conventional deblurring methods. The described approach 
here using Fourier transformation returns good deblurred result 
for flat areas. However, the dependency on sharp images for 
deblurring makes this approach difficult to apply. Additionally, 
the unavailability of 3D object coordinates required to correct 
blur explicitly for varying camera to object distances, limits this 
approach. The problem of geometrically correct deblurring 
might be solvable using the edge shift approach. However, this 
approach will need further development. 
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