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ABSTRACT: 
 
This paper describes a method that aims to find all instances of a certain object in Mobile Laser Scanner (MLS) data. In a user-
assisted approach, a sample segment of an object is selected, and all similar objects are to be found. By selecting samples from 
multiple classes, a classification can be performed. Key assumption in this approach is that a one-to-one relationship exists between 
segments and objects. In this paper the focus is twofold: (1) to explain how to get proper segments, and (2) to describe how to find 
similar objects. Point attributes that help separating neighbouring objects are presented. These point attributes are used in an 
attributed connected component algorithm where segments are grown, based on proximity and attribute values. Per component, a 
feature vector is proposed that consists of two parts. The first is a height histogram, containing information on the height distribution 
of points within a component. The second  contains size and shape information, based on the components’ bounding box. A simple 
correlation function is used to find similarities between samples, as selected by a user, and other components. Our approach is tested 
on a MLS dataset, containing over 300 objects in 13 classes. Detection accuracies heavily depend on the success of the segmentation, 
and the number of selected samples in combination with the variety of object types in the scene.   
 
 

1. INTRODUCTION 

The number of Mobile Mapping Systems (MMS) is increasing 
rapidly over the past few years. Applications can be found in 
fields related to urban safety analyses and/or asset management. 
Many MMS systems carry video cameras and laser scanner 
systems. Mobile laser scanner (MLS) data is a very rich data 
source for making inventories of the condition and number of 
objects in an urban environment. The huge amount of 3D points 
contain information on size, shape and location of objects, and 
their in-between distances.  
 
The problem is to accurately find these objects in a dataset that 
also includes the surrounding area with many other complex 
shaped objects. Existing methods to classify MLS data can be 
divided into rule based approaches where the rules describe how 
the objects of interest look like, and training based methods.  
 
We present a method that aims for finding all instances of an 
object selected by an operator. Our approach is based on the 
knowledge that objects which are similar in reality will have 
similar appearances in point cloud data, and on the assumption 
that an operator is very well capable of recognizing one instance 
of the object(s) of interest in the data.  
 
The motivation for this approach is that a data sample of a 
certain object is a good initial guess of how other instances of 
that object appear in the data, as it implicitly holds information 
on scanner configuration and point density. This enables the 
possibility to use this algorithm for different kinds of objects 
and even different kinds of point clouds, e.g. indoor and 
outdoor, mobile and terrestrial laser data. 
 
The challenge in this approach is to segment the data into 
meaningful components, and to propose reliable similarity 

measures that can handle noisy data. Our first contribution to 
the field is proposing a novel procedure to segment urban 
objects in MLS data. The second contribution is presenting a 
generic workflow that can deal with many different types of 
objects, making use of the scene knowledge of an operator.  
 
In section 3 a segmentation algorithm is presented that aims for 
minimizing segmentation errors in MLS data. Section 4 
explains which features are calculated to the segments, and how 
these are used to detect objects and to classify the data. In 
section 5 results are given and explained to emphasize the 
strengths and limitations of our approach, followed by an 
outlook in section 6. Conclusions are given in section 7. In this 
paper the terms components and segments are used alternately; 
these terms have the same meaning in this paper. 
 

2. RELATED WORK 

Vosselman (2013) describes a two stage segmentation step in 
order to get meaningful segments in ALS data. In the first stage 
large planar segments are detected; in the second stage points 
from the remaining small segments are further grouped in an 
modified connected component algorithm, or in that paper 
called a segment growing algorithm, taking into account the 
local normal direction scaled by the local planarity.  
 
Rules can be incorporates in point based methods and segment 
based (Pu et al, 2011). The success of detecting of pole like 
objects, as described by Brenner (2009), Lethomäki et al (2010), 
show that urban objects often can be found by defining a good 
set of rules, which are useful to translate real object shapes to 
how they appear in the data. Rules are often derived by 
researchers by processing and testing a limited amount of 
datasets. Main limitation of rule based classifiers is that if the 
dataset is different, e.g. in point density or scanning 
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configuration, or if user is interested in other objects, the rules 
should be adapted. The problem is that the rules are often 
hidden in the classification algorithms, and not easy to change 
for an operator other than the developer. Training based 
classification methods as proposed by Golovinski et al, (2009) 
and Velizhev et al (2012), are more flexible in the sense that an 
operator can train the classifier depending on the objects in the 
scene.  
Golovinskiy et al (2009) presents a min-cut algorithm on point 
clouds to separate foreground objects from the background. 
They show that using a fixed radius in connected component 
analysis causes under and over segmentation. Their solution to 
use min-cut is based on neighbourhood relations and a radius 
that defines the distance between the object of interest and 
background points. An automatic determination of the optimal 
radius per object to cut the graph performs better than a fixed 
radius. 
Velizhev et al (2012) use key point feature extractors to detect 
object in MLS data, introducing and adapting spin images to 
point cloud processing. Main limitation in that approach is that 
the success rate depends on how well the center point of an 
object can be found.   
Lai and Fox (2010) describe how to detect urban and indoor 
objects using information from objects from Google’s 3D 
Warehouse. They deal with segmentation errors by using a 
collection of different segmentation results, a so-called soup of 
segments, as proposed earlier by Malisiewicz and Efros (2007). 
This works well if enough training data is available to correctly 
interpreted the variety of segment collections, and if the training 
data correspond to the situation the dataset. Their segmentation 
results depend on a proper choice of a fixed threshold to define 
a voxel size.  
The combination of using proximity and point attribute values 
as explained by Vosselman (2013) is what is adopted for 
segmenting MLS data in this paper. Next, the aim is to design a 
more generic approach than described by Velizhev et al (2012) 
to detect objects in an urban scene. 
 
3. SEGMENTING MLS DATA INTO SINGLE OBJECTS 

3.1 Design of segmentation algorithm in MLS data 

The objects of interest in MLS data varies from street furniture, 
building facades, cars, curb stones, vegetation, rail road 
infrastructure. When examining the objects in a (rail) road 
environment, one can conclude that there are no objects of 
interest that only consist of a single planar surface. The ground 
and facades are no planar objects, considering the details such 
as curb stones, gardens, subtle depth variations at a building 
facade. Only parts of object are planar, such as doors, windows, 
some individual walls and locally planar road patches. A traffic 
sign as such is often planar, but is often attached to a non-planar 
object like a cylindrical pole. Thus, a planar segmentation 
algorithm will result in over-segmentation and will not be 
sufficient to group points from an object of interest into a 
segment. Various authors therefor describe methods to remove 
the ground, and perform a connect component analysis on the 
above ground objects (Pu et al, 2011; Lethomaki et al, 2010). A 
connected component analysis has the advantage that it groups 
points that are close together, independent of the local shape of 
the object. The disadvantage is that it can group points together 
of different objects when these are close to each other, resulting 
in an under segmentation of the dataset. Situations like this can 
be seen when wires, e.g. power lines, connect two or more 
objects, e.g. portals, together. If there are sufficient laser points 
reflected from the wire, this may cause that the wire and the two 
objects are considered to be one component. Also, neighbouring 

trees which branches touch, are likely to be detected as one 
component. Our design is such that it aims for a one-to-one 
relation between component and object. For this several point 
attributes are introduced that act as constraints during the 
connected component algorithm, next to proximity of points. In 
3.2 point attributes are presented, followed by a description how 
the attributes are used in forming components. In 3.4 the focus 
is on how get components from individual trees, even if they are 
close together. 
 
3.2 Point feature calculation for seed growing algorithm  

For all points three types of point attributes are calculated, 
based on nearby other points. These point attributes will be used 
later as constraints in the connected component analyses. 
 
3.2.1 Relative height in fixed radius 
For each point, the relative height is calculated in relation to the 
lowest point within a certain 2D radius, e.g. 50 cm. The relative 
height attribute is used in the attributed connected component 
growing algorithm to detect the ground segments. 
 
3.2.2 Eigen vectors and normal directions for linearity and 
planarity 
Linear features such as wires are an important cause of under-
segmentation of the dataset, as it connects at least two objects 
attached to the wire. The linearity is calculated to use this as a 
feature in the attributed connected component algorithm to 
separate linear features from others. Linearity is calculated by 
Eigen vector analyses, as proposed in Bremer et al (2013).  
 
3.2.3 Loneliness of a point 
This is a density measure that measures how many points are in 
certain sphere around the point. Additional it counts whether 
these nearby points are from the same sensor or not. Most of the 
Mobile Mapping Systems are equipped with two laser sensors 
that capture the scene from another perspective. There is a few 
seconds of time difference between recording from one sensor 
to the other. Dynamic objects are therefore captured at different 
locations by the two sensors. These measures are used for 
detecting lonely points, and points on dynamic objects such as 
cars and pedestrians. The lonely points are considered as noisy 
point that may cause segmentation errors later in the process.  
 

 
Figure  1 Point feature attributes: height above ground (top left), 

loneliness (top middle and bottom left), percentage of points 
from other sensor (top right) and linearity (bottom right). 

3.3 Attributed connected components to get above ground 
objects 

The first connected component algorithm aims to detect ground 
points in MLS data. Here, the relative height is used as attribute 
constraint, connecting all nearby points within a certain 
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neighbourhood and relative height difference of, for example, 
maximum 15 cm. The components with points with relative 
height between 0 and 15 cm are considered as ground 
components and removed from the dataset.  
 
The remaining points are input for the second connected 
component calculation that aims for segmenting all above 
ground objects.  
 
Each above ground component is established by connecting a 
selection of nearest neighbours that fulfil criteria on point 
attributes. The selection of nearest neighbours is based on the 
‘k’, i.e. the maximum number of neighbours and the radius. 
This means that if the density is high, the selection is bounded 
by the maximum number of nearest neighbours. If the density is 
low, the growing radius will bound the selection of points. This 
is important to know, when trying to minimize the over- and 
under-segmentation on objects of interest in a certain dataset 
with specific scanning configuration. The number of neighbours 
and the radius should be chosen such that it connects points of 
two neighbouring scan lines. 
 
The attribute features used as constraint during the segment 
growing is the linearity and the loneliness of points. For this a 
threshold is set to separate linear points from others. The 
threshold is set close to 1, in order to only separate the really 
linear objects such as wires. Components with a majority of 
points with a low number of nearby points and high linearity, 
e.g. at the wires, are separated from the other points. For these 
remaining points, a connected component algorithm is 
performed without attribute constraints to avoid over-
segmentation on nonlinear objects, see figure 2. Of course, there 
may be rule based classifiers that are more specific in detecting 
rail road wires such as Oude Elberink et al (2013) and Beger et 
al (2011). We only show a rail road dataset here to show that 
linearity and local density can be used to cut an component into 
more meaningful segments.   
 

 
Figure  2 Typical connected component only based on 

proximity (left), removal of linear components (middle, red) to 
remove points on wires (right). 

 
3.4 Identifying individual trees in a component 

Typically, in a connected component segmentation groups of 
trees are connected into one segment when their branches are 
within growing radius distance. Physically, neighbouring trees 
may be separable, however in a point cloud it becomes rather 
arbitrary to assign points to an individual tree when the point 
density is equal or lower than the distance between branches of 
different trees. Still, our aim is to segment the individual trees 
as good as possible. The knowledge that is used is that at breast 
height neighbouring trees normally do not touch each other. For 
every segment points are selected in the range between 0.5 and 
1.5 meter above the ground. For those points it is checked 
whether they form one or multiple components. In the latter 
case, we perform a growing algorithm starting at these seeds at 
a height between 0.5 and 1.5 m.  
 

The working is as follows. For every point in the original 
component we built-up a capacious kd-tree with k-nearest 
neighbours within a certain radius, for example maximum 100 
neighbours in a maximum radius of 1.5 meter. However, at this 
earliest stage we do not use all these neighbours for growing the 
segment. In order to avoid growing too rigorously, we start with 
using points within a small growing radius of slightly larger 
than the point spacing at that seed location. In an iterative 
growing algorithm the growing radius increases stepwise. By 
doing so, the structure of the tree is naturally followed as point 
densities in MLS data are higher at the lower part of the tree. 
The point density gradually decreases when approaching the 
tree top and the outer ends of the branches, so for these outer 
points a larger growing distance is required. The consequence of 
this method is that every point is assigned to the component that 
has the minimum longest distance on the route between that 
point and the seed. If in a single iteration a point can grow into 
more than one component, the distance to the nearest seed of all 
components is leading. In figure 3 a situation is shown where 
two trees are close together, and their branches are entwined. 
Figure 3c  is coloured by the iteration number starting at 1 
(green) to 8 (orange). In every iteration 5 cm is added to the 
growing radius, so the points at the outer ends of the trees need 
a growing radius of 40 cm more than at the bottom of the tree. 
The initial growing radius was 5 cm; eventually all points of the 
original component were reached with 45 cm growing radius in 
the 8th iteration. Figure 3e shows how the final components look 
like. 

  
Figure  3 Original tree component (a), two seeds found at lower 

part of stems (b), points coloured by iteration number while 
growing (c), (d) and (f) are final individual components 

visualized separately and together in (e). 

If during the first iteration all points can be grown from one 
seed to the other, the result will be grouped into one component. 
This corrects an needless split of a segment, e.g. at building 
facades where windows may cause a split when only looking at 
points in between knee and breast height.  
 
3.5 Tagging components from moving objects 

After the connected component analyses, it is directly known 
how many points are from one and the other sensor. This gives 
information on the likeliness that the object moved during the 
acquisition. A component is flagged as dynamic object if more 
than 90% of the points only has k-neighbours from the same 
scanner, see figure 4. Information on whether the object moved 
or not is useful in case of removing these objects, or selecting 
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appropriate samples for these moving objects. After all, a 
moving car may have other shape properties than a static one. 

 

 
Figure  4 Dynamic objects (red) detected by using knowledge of 

a two sensor system. 

The heights of all above ground components are related to the 
nearest points in the ground components. This enables us to 
produce components with a height relative to the ground.  
 

4. SEGMENT BASED SIMILARITY MEASURES 

4.1 Methodology overview 

In the previous section a method for getting components of 
above ground objects has been explained. In this section we will 
describe how to detect similar components and how to classify 
the components. In the beginning of this phase, the user is 
incorporated for the first interpretation of the components. In a 
labelling stage the user selects a component and gives a certain 
label to the component. The user can choose to produce one 
training sample if the task is to find all instances from this one 
sample, or the user can produce multiple samples from multiple 
classes if the task is to classify the data. In the remainder of this 
paper, the components selected by the user are called samples or 
sample components. 
 
4.2 User assisted sampling 

Our starting point is that the user knows what kind of objects to 
find in the data. How many types of traffic lights, lamp posts 
and traffic signs are in the scene? Are there bus shelters in the 
scene, and do they all look similar? This information is very 
helpful in selecting sample components. The selection consist of 
giving a class label to a component. The number of classes 
varies per application and per area, so the user is free to add 
classes if necessary.  
 
4.3 Height histograms 

Height histograms are produced by counting how many points 
are in a component at different height levels, called bins. Height 
histograms contain information on the relative distribution of 
points per object, and are taken as signature for describing the 
shape of the object. Each bin is considered as one feature in the 
feature vector, and each bin count is the corresponding feature 
value. The motivation for using height histograms is that many 
of our objects of interest have a typical structure when looking 
along the z-axis. As in the previous step the components are 
related to the ground surface, the assumption is that similar 
objects will have similar shapes in the height histograms. 
Depending on the objects of interest and the data density, the 
bin size can easily be adapted. In our work, the histogram 
contains 30 bins, of which each bin corresponds to 50 cm height 
difference. To smoothen the influence of varying point density 

within the component, we calculate the moving average over the 
two neighbouring bins. 
 
4.4 Bounding box dimensions and ratios 

Per component we compute the minimum bounding box aligned 
with the main 2D direction of the component. This 2D direction 
is calculated by calculating the normal direction of the segment. 
Next to the three dimensions themselves, the rations between 
them are calculated. This ensures that the relations between the 
different dimensions are incorporated as well. Although the 
attributes are not independent anymore, it is possible to better 
separate between different classes with similar height 
distributions. All six bounding box attributes are added to the 
feature vector of the height histograms. Figure 5 shows for 
different classes how the combination of bounding box 
dimensions (first 6 bins) and the height histograms are 
combined in a feature vector. It can clearly be seen that cars and 
lamp posts have typical signatures. Based on these signatures, 
the algorithm will perform the object detection and 
classification. 
 

 
Figure  5 Feature vectors for 9 samples of 4 classes. 

4.5 Calculation of the similarity between a sample and 
other components 

Per segment to be classified, a correlation is calculated on every 
sample component based on the feature vectors of both the 
sample and the other components, as explained in more in detail 
in (Kemboi, 2014). For object detection, the challenge is to find 
a correct threshold value on the correlation for accepting that a 
certain component is similar to the sample. For classification 
more than one sample need to be selected in order to represent 
all classes of interest. Our approach selects the class of the 
sample with the highest correlation. The correlation value is 
added as an attribute to the component, to indicate how similar 
this component is to a sample of that class. 
 
4.6 Iterative Closest Point algorithm using relative 
coordinates 

If the two measures give confidence that the component is very 
similar to a sample, an ICP algorithm can give the final 
conclusion which of the points are very close to points in the 
sample. This is very helpful to detect additional points on the 
current component, for example points on a traffic sign which 
was placed on a lamp post. Obviously, this is only useful when 
dealing with objects that in reality are partly identical or very 
similar, such as lamp posts, traffic signs and rail road portals. 
Building facades and trees have a more unique appearance, so 
for those cases the ICP algorithm will highlight the differences 
between an object and a sample.  The scale is considered to be 
constant between instances, so during the ICP algorithm only 
translations and rotations are considered. 
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Our assumption is that there is only a good convergence if two 
segments represent similar objects. The ICP requires 
approximate values as starting point for a good convergence. 
Therefor relative coordinates are determined per segment. This 
relative coordinate system is defined by the three main axis of 
the components’ bounding box. To solve the ambiguity of the 
location of the origin, the point of the bounding box is taken 
that fulfils the right-handed coordinate system (four 
possibilities), with the z-axis upwards (two options remain), and 
the closest to the lowest point of the segment (one option). 
 

5. RESULTS 

We have tested our algorithm a MLS datasets of a road part in 
an Enschede, the Netherlands. The dataset is acquired by 
TOPSCAN with a Lynx mobile mapping system. The area 
covers a length of 800 meters and contains about 20 million 
points. Only 2.5 million points are segmented into an above 
ground component. In a pre-processing step the dataset was 
cropped to a road parts with a length of 40 meter and a width of 
30 meters. The road parts contain a small overlap in along-track 
direction. 
 
 
5.1 Above ground components 

In figure 6 examples are shown of results of the attributed 
connected component algorithm of above ground objects. It can 
be seen that our algorithm to start with seed points at the bottom 
part of a segment is successful in detecting individual trees. At 
the other hand, a car garage is split into many components 
because of the same splitting procedure, and an offset between 
the pillars at the ground floor and the wall at the first floor. The 
latter offset causes that during the growing this component was 
not considered to being one object anymore. A car inside the 
garage is detected as individual object. 
  

 
Figure  6 Top view (left) and street or oblique view (right) of 

above ground object components. 

Despite our effort to minimize segmentation errors, there are 
objects which are not correctly segmented. One of the major 
causes of under segmentation in urban areas is the presence of 

fences, with or without vegetation attached to it, see figure 7. 
Cars may be parked close to a fence, so points on cars may 
grow via the fence to other objects. 

 

 
Figure  7 Segmentation errors still remain: fences cause that 

objects are still grouped together. 

5.2 Object detection 

A test data set is manually created from the segmented dataset, 
to check the quality of the correlation measures for object 
detection and classification. The complete strip of 800 meter 
was labelled on 13 (sub) classes, and contains a total of 337 
segments, see figure 8. 

 
Figure  8 Test labels of 337 segments of 13 (sub) classes of a 

800 m MLS dataset. 

To test the ability to find all instances of a certain object, we 
have created sample components per class and analysed the 
correlation between these samples and all other components. 
For four classes the results are shown and discussed: lamp 
posts, traffic lights, cars and trees. Ideally, there is a threshold 
that separates all instances in a certain class from all the other 
objects. In practice, there may be false positives (incorrectly 
classified as being part of the class) or false negatives (objects 
from that a class are not detected as such). For all four detection 
results, a threshold is set. Components that are just below the 
threshold are also visualized to give an idea on which 
components are just not similar enough to be classified as such. 
 
5.2.1 Lamp post detection 
We identified four different types of lamp posts, so for each 
type one sample was selected an given the label of lamp posts 
(in grey inset in figure 9). For the lamp post samples, figure 9 
shows all components that have a correlation higher than 0.8 
with one of the lamp post samples. Red components are in the 
range of 0.8-0.85, and orange components are in between 0.85-
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0.9. All lamp posts in the test data are detected if the threshold 
is set at 0.8; however, eight other components are incorrectly 
recognized as lamp posts. At a correlation threshold of 0.9 only 
lamp posts are detected, however four are missed due to the 
tight threshold. It can be concluded that for lamp post there is 
no ideal threshold with this approach that detects all instances 
without having other classes included. A practical solution is to 
use a loose threshold, e.g. 0.8, and let the operator remove the 
false positives. In table 1, accuracy results are shown for the 
object detection of lamp posts, traffic signs, cars and trees.  
 

 
Figure  9 Correlation results on four lamp post samples (inset). 
Components are coloured by correlation: >0.9 (green), >0.85 
(orange) and <0.85 (red). Components with correlation lower 

than 0.8 are not shown. 

5.2.2 Traffic light detection 
The traffic lights in our dataset consist of a combination of pole 
like objects, lamp posts and traffic signs. Still the correlation 
with other traffic lights is over 0.95 when the sample has the 
crossbar approximately at the same height. When using 4 
sample components, only 2 test components were left, and two 
traffic signs are incorrectly detected as traffic light (figure 10). 

 
Figure  10 Correlation results on traffic light samples (inset). 
Components are coloured by correlation: >0.95 (green), >0.9 
(orange) and <0.9 (red). Components with correlation lower 

than 0.85 are not shown. 

5.2.3 Car detection 
For cars, we selected four samples, of which two were moving 
and two were static. Figure 11 shows the result of the car 
detection based on the 4 car samples. With an acceptance 
threshold on the correlation of 0.9 six car components out of 
134 were not detected as such: two insets are to show the 
reasons of these false negatives. The orange component has a 
correlation between 0.85-0.9. The dimensions of the component 
differ too much from the samples to be detected as car. The 
same holds for the van in the red lower inset. A solution for the 
user is to include this segment in the samples, with the risk of 
having including other segments that show similarities with this 
van. The 22 false positives mainly come from bicycles, fences 
and bushes. One of the samples actually is a component of half 
a car; many of the parked cars in our dataset are at the border of 
being cropped, leaving many components covering half of the 
car. This shows the flexibility of the user assisted approach, as 
all half-car components are now correctly classified as car. 

 
Figure  11 Correlation results on car samples (inset). 

Components are coloured by correlation: >0.9 (green), >0.85 
(orange) and <0.85 (red). Components with correlation lower 

than 0.8 are not shown. 

5.2.4 Tree detection 
The variety of tree shapes is higher compared to the different 
shapes of road furniture and cars (figure 12).  

 
Figure  12 Correlation results on tree samples (inset). 

Components are coloured by correlation:>0.8 (green), >0.75 
(orange) and <0.75 (red). Components with correlation lower 

than 0.7 are not shown. 
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For tree detection we used a lower acceptance threshold of 0.8 
on the feature vector correlation. Another option would be to 
include more than 4 sample components. Still, with 4 samples 
41 of 42 remaining trees are detected, together with 10 false 
positives. The only tree component that our algorithm missed is 
shown in the red inset. It is obvious that the component consist 
of multiple objects, including a fence and at least one tree. The 
ten false positives can be found in traffic lights and building 
facades.  
An overview on the accuracy results of the detection of the four 
given classes are shown in table 1.  
 
Class 
of 
sample 

# 
sample 

# test 
segmen
ts 

TP FN FP Correl
ation 
thresh
old 

Lamp 
post 4 22 18 4 0 0.9 

Lamp 
post 4 22 22 0 8 0.8 

Traffic 
light 4 2 2 0 2 0.95 

Car 4 130 124 6 22 0.9 
Tree 4 42 41 1 10 0.8 
Table 1 Accuracy results for detecting objects using 4 samples 
per class.  
 
Our interpretation of the results is that when looking at the false 
positives of all detection results, it should be relatively easy to 
automatically remove these from the results. One way could be 
based on the ICP algorithm, that checks on point based 
approach how similar two components are, or incorporate other 
feature attributes to rule out possibilities. Secondly, our method 
is not an automatic approach. This leaves it questionable what 
the accuracy measures mean. After all, if the operator selects a 
few samples more, the accuracy results will improve. So, it is 
not our aim to get a fantastic classification result, but to show 
that the method is generic enough to adapt to the local situation, 
and to the demands of the user.  

 

5.3 Results of ICP algorithm for similar objects 

Optional, an ICP algorithm can be performed to check whether 
sample and component are indeed corresponding to similar 
objects. At this moment, the results of the ICP algorithm are not 
integrated in the decision whether an object is detected or not; 
however, it can be shown to the user. In future work, a reliable 
measure based on the ICP results are used to detect attachments 
to certain objects, such as traffic signs to lamp posts as in figure 
13. 

 
Figure  13 Two components on lamp posts overlaid using 
relative coordinates (left) and after ICP algorithm (right). 

5.4 Classification by fast selection of samples 

The samples selected in the classification step are selected 
rather randomly; not all classes from the test data set are 
represented in the sample dataset, only the major classes. For 
example, pedestrians, roofs, flag poles and small traffic signs 
are not included. This directly increases the number of 
classification errors a little. The classification results are given 
in figures 14 and 15, and table 2. From table 2 we can conclude 
that mainly small segments are incorrectly classified, as 33% of 
the segments are incorrect, although they only represent 10% of 
the points.  
 

 
Figure  14 Test dataset shown in 5 parts of about 150 m each. 
Points coloured by classification label (left), and whether that 

agrees with the test label (green) or not (red) on the left. 

 
Figure  15 Street view from part of the classified data (top) and 

corresponding correctness (bottom). 

Correctness on TP FN % error 
Segments 225 112 33.2 
Points 1989k 238k 10.7 
Table 2 Correctness on test dataset segmentwise and pointwise 

calculations. 
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The segmentation step including ground removal, point 
attributes calculations and connected component algorithm 
takes about 1 hour for this 20 Million point dataset. Although 
performances can be improved, normally a segmentation will be 
performed only once per dataset. Overnight, a 100 Million point 
dataset can be segmented. The processing time of the detection 
and classification stage are linear with the number of (points 
within) sample components. For the object detection using 4 
samples on 337 components, the algorithm takes about 2-3 
minutes. The classification using 22 samples takes about 10 
minutes on a standard 2 GHz computer running under 
Windows.  
 

6. OUTLOOK 

In this paper it was shown that for a good object detection, a 
good segmentation is needed when following this approach. In 
order to further improve the segmentation, we get close to the 
point that we need to further integrate knowledge on the objects 
in the scene. Following this reasoning, an iterative approach 
between segmentation and classification sounds logical in 
improving both the segmentation and the classification. In 
future work our focus is on reducing the segmentation errors by 
using different point attributes and information of a pre-
classification step. This can be in the form of removing all 
components that have a clear match with a sample component. 
The remaining components can be further analysed by 
subdividing them using the additional attributes in a mean-shift 
segmentation, or in case of over-segmentation try to group 
several components following the soup-of-segments approach 
of Malisiewicz and Efros (2007). 
Calculation of the correlation is a standard way to calculate 
similarities. In case of noisy data, and objects attached to other 
objects, it is worth to analyse which parts of the vector contain 
the best information. In the future, a bag-of-words approach will 
be applied to be able to weight the attributes in the feature 
vector (Toldo et al, 2009). The weighting depends again on the 
class of the component. 
The methodology is explained using a relatively small MLS 
dataset. When above mentioned further research possibilities 
have been explored, it is our goal to test the algorithm on bench 
mark datasets to analyse and compare our method with other 
approaches.   
 

7. CONCLUSIONS 

The main contribution of this paper is the use of point feature 
attributes to better segment MLS data into components that 
have a one-to-one relationship with objects.    
 
The iterative growing algorithm presented in this paper showed 
that it is possible to distinguish individual trees even when their 
branches are connecting. There, the knowledge on how the 
density varies from bottom to top was successfully combined 
with how the segments should grow. The point feature on 
linearity was shown to be useful when separating objects which 
are connected by wires. When using an MMS that contains two 
scanners that capture the scene with a small time delay, the 
possibility arises to detect moving objects in the scene. This is 
done by using the attribute features on the local density of 
points, specially the number of points from the other sensor. 
The option to detect these dynamic objects helps to better 
interpret the point cloud, for example by deleting all moving 
objects if they are not of interest for a particular application.  
 
Although the segmentation is not free of errors, the similarity 
measures based on the height histograms and bounding box 

properties proved to be sufficient to detect objects and to 
classify the MLS data. The approach to give some freedom to 
the user selecting components of interest and find similar ones, 
has the potential to be applied in many practical applications. 
For registration for example, the approach can be used in the 
task to find exactly the same objects.  
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