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ABSTRACT:

Building detection in complex scenes is a non-trivial exercise due to building shape variability, irregular terrain, shadows, and occlusion
by highly dense vegetation. In this research, we present a graph based algorithm, which combines multispectral imagery and airborne
LiDAR information to completely delineate the building boundaries in urban and densely vegetated area. In the first phase, LiDAR
data is divided into two groups: ground and non-ground data, using ground height from a bare-earth DEM. A mask, known as the
primary building mask, is generated from the non-ground LiDAR points where the black region represents the elevated area (buildings
and trees), while the white region describes the ground (earth). The second phase begins with the process of Connected Component
Analysis (CCA) where the number of objects present in the test scene are identified followed by initial boundary detection and labelling.
Additionally, a graph from the connected components is generated, where each black pixel corresponds to a node. An edge of a unit
distance is defined between a black pixel and a neighbouring black pixel, if any. An edge does not exist from a black pixel to a
neighbouring white pixel, if any. This phenomenon produces a disconnected components graph, where each component represents a
prospective building or a dense vegetation (a contiguous block of black pixels from the primary mask). In the third phase, a clustering
process clusters the segmented lines, extracted from multispectral imagery, around the graph components, if possible. In the fourth step,
NDVI, image entropy, and LiDAR data are utilised to discriminate between vegetation, buildings, and isolated building’s occluded parts.
Finally, the initially extracted building boundary is extended pixel-wise using NDVI, entropy, and LiDAR data to completely delineate
the building and to maximise the boundary reach towards building edges. The proposed technique is evaluated using two Australian
data sets: Aitkenvale and Hervey Bay, for object-based and pixel-based completeness, correctness, and quality. The proposed technique
detects buildings larger than 50 m2 and 10 m2 in the Aitkenvale site with 100% and 91% accuracy, respectively, while in the Hervey
Bay site it performs better with 100% accuracy for buildings larger than 10 m2 in area.

1. INTRODUCTION

The building detection from remotely sensed data has become a
topic of increasing importance as they are essential for a vari-
ety of applications in residential and urban areas. Their accurate
boundaries are indispensable and significant for applications in
the field of real estate, city planning, disaster management, carto-
graphic mapping and civilian and military emergency responses
(Sohn and Dowman, 2007, Li and Wu, 2013). The automatic
boundary extraction is challenging due to building shape vari-
ability and surrounding environment complexity. High resolution
imagery contains rich spectral information that is suspectable to
noise and can easily be affected by contrast, illumination, and
occlusion. Under certain conditions, similar objects may appear
with varying spectral signatures while different objects may pro-
vide co-spectral signatures (Li and Wu, 2013).

The airborne Light Detection and Ranging (LiDAR) can rapidly
acquire high-precision three-dimensional information of large-
scale areas by emitting and receiving the laser pulses. The height
variation is a more suitable cue for detecting elevated objects and
delineating building boundaries more than the spectral and tex-
ture changes. However, the horizontal accuracy of boundaries
extracted from LiDAR data is poor, which makes detection more
difficult (Chen and Zhao, 2012, Li and Wu, 2013). The urban
areas that are characterised by complex scenes, the appearances
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of trees and buildings in the LiDAR data might be similar (Rot-
tensteiner et al., 2005). The combination of these two paradigms
promises to produce results at greater accuracy than the contri-
butions of either field alone. Therefore, many researchers have
been attempting to integrate multi-source data to detect buildings
in urban areas.

According to Lee et al. (Lee et al., 2008), building detection ap-
proaches can be broadly categorised into three distinct groups.
The first group contains methods that employ only 2D or 3D in-
formation from photogrammetric imagery to detect buildings and
discern from surrounding objects (Mayer, 1999). The complexity
of these techniques increases proportionally with the increase in
richness of information in high-resolution imagery, e.g. deriva-
tion of depth information from stereo to effectively address oc-
clusion and shadow factors (Yong and Huayi, 2008). In addition,
nearby trees of similar height also make the use of such derived
range data difficult (Lee et al., 2008).

The second group ensembles the techniques that attempt to de-
tect building regions from LiDAR data by classifying the data
points into ground and non-ground data based on elevation (Lee
et al., 2008). It is reported that LiDAR offers an improved level
of automation in the building detection process when compared
to image-based detection algorithms (Vu et al., 2009). On the
contrary, Oude Elberink (Elberink, 2008) discusses the issues up-
front in LiDAR based building detection techniques and shows
the effect of raw interpolated data usage on the performance of
detection process (Demir et al., 2009). Moreover, the horizontal
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accuracy of boundaries extracted from LiDAR data is poor be-
cause of laser pulse discontinuity (Li and Wu, 2013) and hard to
obtain geometrically precise boundary using only LiDAR points
cloud (Yong and Huayi, 2008). The quality of regularised build-
ing boundaries also depends on LiDAR resolution (Sampath and
Shan, 2007).

LiDAR generally provides more accurate height information but
lacks in horizontal accuracy whereas high-resolution imagery en-
tails precise horizontal accuracy. The third category of meth-
ods exploits the complementary benefits of both LiDAR data and
photogrammetric imagery. More specifically, laser intensity and
height information in LiDAR data can be used along with texture
and region boundary information extracted from aerial imagery to
improve detection accuracy (Lee et al., 2008). As a result, several
authors promoted the fusion of two data sources as a promising
strategy to extract high quality building boundaries (Rottensteiner
et al., 2005, Yong and Huayi, 2008, Demir et al., 2009, Li and
Wu, 2013).

However, it is still challenging to extract the correct and rele-
vant features from multispectral image and LiDAR data of a par-
ticular area to detect buildings. But how to amalgamate the re-
spective data sources such that their weaknesses can be compen-
sated effectively is a question that requires further investigation.
Additionally, there is no rule of thumb to integrate different fea-
tures for automatic building boundary extraction of various build-
ing shapes: curved, wavy, zigzag, and other irregular structures.
Most existing fusion methods can only handle simple building
shapes like polygons (Yong and Huayi, 2008, Awrangjeb et al.,
2010).

Currently, there are no unanimous evaluation system and standard
guidelines available to measure the performance of building ex-
traction techniques (Rutzinger et al., 2009, Awrangjeb and Fraser,
2014a). Indeed, evaluation results are often missing from pub-
lished accounts of building detection; the use of 1–2 evaluation
indices only has characterised many studies (Demir et al., 2009,
Awrangjeb et al., 2010). This research aims to develop, firstly,
a mechanism to effectively integrate features extracted from Li-
DAR and multispectral imagery to increase building detection
performance and, secondly, a comprehensive evaluation of the
proposed method using an automatic performance evaluation sys-
tem using 15 evaluation indices (Awrangjeb and Fraser, 2014a).

In order to automatically detect buildings from complex geographic
environment and delineate the boundaries, a new method is pro-
posed that integrates both airborne LiDAR and multispectral im-
agery. The raw LiDAR data is divided into ground data and non-
ground data based on height information from bare-earth DEM
and create a primary building mask. All the strongly connected
pixels, the black pixels, present in the primary building mask are
cumulated into contiguous regions that are later processed to es-
timate initial boundary and component labelling. The resultant
information is further utilised to construct a disconnected com-
ponents graph where each subgraph corresponds to a contiguous
region of black pixels. The resultant disconnected graph may
contain heaps of subgraphs due to the fact that even a single iso-
lated black pixel from primary mask become a subgraph with one
node. The subgraphs identified by this process along with respec-
tive boundaries and labels are further processed.

The image lines are extracted and classified using (Awrangjeb et
al., 2013) and fed into a graph-based clustering procedure. The
clustering process aims to associate the line segments to the cor-
responding subgraph using Dijkstra algorithm. The subgraphs
that fail to cluster any line are eliminated for subsequent pro-
cessing and, thus, reduce the initial count of prospective build-
ing objects. In order to eliminate vegetation and detect building

objects, the input image is segmented into homogeneous grids
and then individual cells are accumulated based on NDVI, en-
tropy, and height difference. This process detects building ob-
jects, separates the occluded building parts from vegetation, and
estimate the respective boundary. Finally, the building boundary
is expanded, if possible, by accumulating the pixels based on its
NDVI, entropy, and neighbouring LiDAR points cloud. It is ex-
perimentally demonstrated that the proposed technique can detect
polyhedral buildings with a favourable success rate. We achieved
above 90% detection rate in densely vegetated Australian urban
environments whereas 100% in a low vegetation area.

The involved automatic evaluation system employs both object-
and pixel-based indices. Although pixel-based evaluation reflects
the horizontal accuracy, but the geometric evaluation is also used
as a means of direct estimation of geometric accuracy.

2. RELATED WORK

The integration of high-resolution imagery and LiDAR data is
well appreciated as it yields complementary benefits by providing
a more complete scene description enriched with both spectral
and 3D surface information. This integration of both data sources
has been exploited to increase the classification performance and
to improve the accuracy and robustness in automatic building de-
tection, reconstruction and change detection techniques (Awrang-
jeb et al., 2010, Awrangjeb et al., 2012, Li and Wu, 2013).

These integration techniques can be categorised into two subse-
quent groups. Firstly, the integration techniques reported in lit-
erature (Sohn and Dowman, 2007, Lee et al., 2008, Demir et al.,
2009, Awrangjeb et al., 2010, Awrangjeb et al., 2012, Chen and
Zhao, 2012, Awrangjeb et al., 2013, Li and Wu, 2013) utilise both
the LiDAR data and the imagery as the primary cues to delin-
eate building outlines. They also employ the imagery to extract
features like NDVI, entropy, shadow, and illumination in order
to eliminate vegetation. Consequently, they offer better horizon-
tal accuracy for the detected buildings. Our proposed building
detection technique falls under this group. (Rottensteiner et al.,
2003) generates two digital surface models (DSMs) from the first
and last pulse return of the LiDAR data, which are used along
with NDVI for the detection process. A morphological filter
is applied over the last pulse DSM to generate a digital terrain
model (DTM). The initial building regions are identified based
on height, size, NDVI and the difference between the first and
last phase of the DSMs.

The research reported in (Awrangjeb et al., 2010) uses LiDAR to
generate DEM in order to separate non-ground and ground data
points. Two masks are generated to identify the elevated area,
which is subsequently used to extract line segments. The line
segments formed around trees are removed using NDVI while
remaining line segments are used to detect initial building posi-
tions. Finally, building boundaries are obtained after boundary
expansion process using YIQ colour system. The article (Chen
and Zhao, 2012) uses normalised DSM (nDSM) to remove the
ground objects according to a height threshold. Keeping in view
the relief displacement effect and the overlap ratio to avoid over-
removing, nDSM is segmented by the region-growing method.
Finally, the region size and spatial relation of trees and build-
ings are used to filter out trees occluded by buildings based on
an object-based classification. Another technique aiming at both
detection and reconstruction (Awrangjeb et al., 2013) extracts ini-
tial building position from LiDAR using height information from
DEM. Later, the line segments are extracted, classified and fur-
ther used in region growing technique to obtain building planes
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followed by building boundary. Vegetation is removed using fea-
tures such as NDVI, entropy and height information from optical
image and LiDAR data.

Secondly, there are techniques, which use the LiDAR data as the
primary cue for building detection and use the features from op-
tical imagery only to remove vegetation (Vu et al., 2009, Rotten-
steiner et al., 2005). Consequently, these methods suffer from
poor horizontal accuracy for the building boundary delineation.
The method details in (Rottensteiner et al., 2005) uses the Demp-
ster–Shafer theory to classify LiDAR data points into constituent
groups: buildings, trees, grassland or bare soil. However, the
reported detection performance is adversely affected for small
sized buildings (Rottensteiner et al., 2007). The reason lies if
the Dempster–Shafer model remains untrained, the misclassifica-
tion rate increases considerably (Khoshelham et al., 2008). Vu et
al. (Vu et al., 2009) uses a morphological scale space for extract-
ing building footprints from the elevation data and then remove
vegetation using the spectral information. The detection perfor-
mance was low and high computational complexity was reported
because of using the scale space.

The method presented in this research is fully data-driven and
self-adaptive for diverse building shapes. This paper is organised
as follows. The work flow and detailed procedure of the proposed
method is provided in Section 3. The evaluation system and ex-
perimental results are described and discussed in Section 4. Fi-
nally, the conclusion and future research direction are provided
in Section 5.

3. PROPOSED METHODOLOGY

The work flow of the proposed method is shown in Figure 1. The
labels from 1-6 describe the order of sub-processes towards build-
ing boundary delineation. The first step, blue coloured dashed
rectangle, is a data preprocessing phase where we separate Li-
DAR points cloud, generate DEM, compute image entropy, NDVI
and extract image line segments. The proposed method first di-
vides the input LiDAR data into ground and non-ground points.
The non-ground points, representing elevated objects above the
ground such as buildings and trees, are further processed for build-
ing detection.

NDVI Segmented lines

ImageLiDAR & DEM

Input: Image, LiDAR

Primary building mask Entropy

Connected Component Analysis 

& Graph Construction
3

Clustering & initial building 

detection
4

Grid based segmentation & 

vegetation removal
5

Boundary extension & 

building detection
6

1

Classified lines 

(Awrangjeb, 2013)
2

Figure 1. Work flow of proposed building detection technique

During the second phase, the extracted image lines are classi-
fied into several classes e.g. ground, ridge, and edge. The line
segments that belong to ‘edge‘ and ‘ridge‘ classes are of interest
because these lines are either close or fall within the area of ele-
vated objects. The next phase begins with Connected Component
Analysis (CCA) and graph construction, where all the strongly

connected pixels from the primary building mask are collected
into individual components followed by initial boundary extrac-
tion. Moreover, we construct a disconnected components graph
from connected components that clusters the classified lines to
their particular components. We employ Dijkstra shortest path
algorithm to establish the relevance of a segmented line to its
corresponding component extracted from the primary building
mask. The connected components that fail to cluster any line
during clustering process are eliminated for further investigation,
which reduces actual objects found at the first place.

We establish from literature that average height difference be-
tween neighbouring LiDAR points on building rooftops change
constantly but on trees, height variation is abrupt and changes
variably. Moreover, the NDVI and entropy measures are rela-
tively high on vegetation than building roofs (Awrangjeb et al.,
2013). Therefore, to eliminate the vegetation and detect build-
ings, which may partly occluded or non-occluded, the multispec-
tral image is divided into equi-sized grids. The grid cells are accu-
mulated under certain criteria for detection and elimination pur-
poses. The grid-based segmentation process detects the buildings
and estimate their corresponding boundaries. The boundary of
detected buildings are finely delineated but are much shrinker due
to misregistration between LiDAR and corresponding multispec-
tral image. Therefore, the obtained boundaries are processed and
are expanded, if possible, to extend its coverage towards building
edges by accumulating individual pixels based on NDVI, entropy,
and LiDAR data.

The input image in Figure 2(a) is an urban site, Aitkenvale (AV),
in Queensland Australia that covers an area of 214m x 159m
and contains 63 buildings. In the following subsections, different
steps of the proposed method are described using this scene.

(a) (b) (c)

Figure 2. Sample data: (a) Aitkenvale multispectral image, (b)
Primary building mask, and (c) CCA output with initial boundary
and labels

3.1 DATA PREPROCESSING AND LINE SEGMENTATION

We generate a bare-earth DEM with 1m resolution from input Li-
DAR data. The bare-earth DEM is also named as Digital Terrain
Model (DTM) but we refer as DEM. A primary building mask is
generated, see Figure 2(b), using LiDAR data and height informa-
tion from DEM according to the method reported in (Awrangjeb
et al., 2010). A height threshold is computed for each LiDAR
point asHt = Hg +Hrf , whereHg is ground height andHrf is
a relief factor that separates low objects from higher objects. For
our study, we choose 1m relief factor in order to keep low height
objects (Awrangjeb and Fraser, 2014b).

Additionally, NDVI is calculated for each image pixel position
from the input image that can either be a multispectral orthoim-
age or RGB colour image. If multispectral orthoimagery is not
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available, then the pseudo-NDVI is calculated from a colour or-
thoimage (Awrangjeb et al., 2013). The texture information like
entropy is estimated at each image pixel location using a grey-
scale version of the image(Gonzalez et al., 2003). In step 2 of Fig-
ure 1, the same grey-scale image is used to extract line segments,
which are classified into several groups: ground, edge, and ridge
lines, using the reported method in (Awrangjeb et al., 2013). The
classification of line segments into groups is performed based on
NDVI, entropy, and primary building mask computed in preced-
ing phase. The segmented lines that belong to ‘edge‘ and ‘ridge‘
classes are displayed in Figure 3(c).

(a) (b) (c)

Figure 3. (a) Building boundaries detected after CCA, (b) False
boundary delineation, and (c) Segmented lines (edges and ridges)

3.2 INITIAL DETECTION USING CONNECTED COM-
PONENT ANALYSIS AND GRAPH TECHNIQUE

A connected component of value υ is a set of pixels ξ where each
pixel having a value υ, such that every pair of pixels in the set φ
are connected with respect to υ. Provided that the primary mask
in Figure 2(b) is a binary image that contains only two colours:
black and white, where black regions describe the elevated ar-
eas. So, P (r, c) = P (r′, c′) = υ where either υ = black or υ =
white. The pixel (r, c) is connected to the pixel (r0, c0) in 8-
neighbourhood connectivity with respect to value υ if there is a
sequence of black pixels (r, c) = (r0, c0), (r1, c1) . . . (rn, cn) =
(r0, c0) where P (ri, ci) = υ; i = 0 . . . n, and (ri, ci) neighbours
(ri−1, ci−1) for each i = 1 . . . n. The sequence of pixels (r0, c0) . . . (rn, cn)
forms a connected path from (r, c) to (r0, c0).

The CCA process detected 936 different objects from the primary
building mask. Subsequently, we also estimated the boundary
of each component using the Moore-Neighborhood tracing

algorithm. The output of CCA process is shown in Figure 2(c),
where the detected objects are labelled and plotted with different
colours as of their neighbours. To visually inspect the building
outline accuracy, the estimated boundaries are shown in Figure
3(a). We can clearly notice that few buildings are well delineated
but several regions are formed on trees due to elevation. We can
further observe that various buildings are occluded partly or fully
by nearby vegetation. Moreover, some buildings are connected
to each other by dense vegetation giving an indication of a single
object. The building objects displayed in Figure 3(b) from (i)-
(vii) describe some such situations.

So, we use the segmented lines as a feature of structural objects to
eliminate the false components formed on vegetation. The lines
on vegetation are differentiable because they are discontinuous,
smaller, and does not establish any geometric relationship - par-
allel, perpendicular, or diagonal relationship. Furthermore, we
use ‘edge‘ and ‘ridge‘ lines because they are either close to the
boundary or fall completely within the boundary of a particular
object. In order to establish the relationship among lines and
the association with their corresponding objects, we construct a

bidirectional disconnected components graph, where each con-
nected component from the preceding stage is represented as a
subgraph. Each pixel of an object corresponds to a node where its
8-neighbouring pixels become its child nodes. The edge from a
node to its descendent is assigned a unit weight. On the contrary,
there is no path between black-pixel to white-pixel and vice versa.
Therefore, no edge/path is represented by ‘inf ‘ edge weight to
differentiate between valid and invalid paths.

The image lines clustering process begins with the selection of
a longest ‘ridge‘ line as a centroid that falls within the bound-
ary of a particular object. Then, we compute the shortest dis-
tance between centroid and surrounding lines using Dijkstra

algorithm. The situation when the candidate line is along or on
a particular shape/object, we always obtain a valid path of some
weight otherwise the path weight is infinite indicating that the
candidate line does not belong to the current cluster. We continue
this process until all objects detected from the primary building
mask are processed. The objects that fail to cluster any line are
eliminated for further investigation. In this case, many objects
that are formed on trees due to few LiDAR points are success-
fully removed and the number of total potential objects decreased
to 307 from an initial count of 936.

3.3 VEGETATION REMOVAL AND BOUNDARY DELIN-
EATION

A visual comparison between Figure 3(a) and 4(a) reveals that
clustering procedure drastically reduces the number of objects
identified previously without losing any potential objects includ-
ing small and low height buildings. But still it is observable that
heaps of false objects/boundaries exist on trees and even outline
of large buildings are not properly delineated. We can further no-
tice in Figure 4(a) labelled from (i) to (ix) and their corresponding
zoomed version in Figure 4(b) that there are various buildings,
which are heavily occluded by dense vegetation.

Figure 4. (a) Building after clustering process, (b) Occluded and
false delineated buildings

From literature, we know that LiDAR height difference on poly-
hedral surfaces remains uniform and changes constantly. But
in case of vegetation, LiDAR points reflect back from different
height levels, therefore, the height changes in neighbouring Li-
DAR points are quite sudden and variable. In addition to height
difference cue, NDVI and entropy measures have been exten-
sively used in literature to eliminate the vegetation. However,
to remove vegetation and, thereby, to recover the occluded build-
ings, the input image is segmented into regular sized grid to de-
lineate the building boundary. The grid size is indirectly propor-
tional to LiDAR point density, higher the density tighter can be
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the grid size. The grid size is chosen keeping the fact that each
grid cell must contain LiDAR points. For example, in case of
AV data set, LiDAR point density is 29 points/m2 that allows
to choose a fairly smaller grid size of 25cm. Therefore, the test
scene is divided into rows and columns of the selected grid size.

It is quite evident from Figure 4(a) that the building objects iden-
tified are not well delineated, boundaries are over-segmented and,
in few cases, see (i)-(iii) and (vi) in Figure 4(b), the prospec-
tive building objects are heavily occluded, and are mutually con-
nected. To cope with the issues surfaced, each identified object
is processed separately for vegetation removal, building recovery,
and its respective boundary delineation.

Firstly, the coarse boundary associated with an object is utilised
to collect the grid cells that creates a stack. Then a cell from top of
the stack is selected, called seed cell, followed by the selection of
cells in its 8-neighbourhood. Each neighbouring individual cell
that exhibits similar height difference, NDVI, and entropy value
with respect to the seed cell is accumulated, and thus, forms a
group. The seed and its neighbouring cells, which meet the con-
dition, are removed from the stack, and pushed into a priority
queue. The seed element is marked to avoid for further selec-
tion and a new seed cell is chosen from the queue followed by
its neighbourhood from the stack. All candidate cells are again
evaluated for different matrices: height difference, NDVI, and en-
tropy, and later pushed into the queue. This cell-based segmenta-
tion process continues until the last cell remains in the stack. The
cells, which fail to form a group are eliminated during execution.

This process engenders contiguous groups of cells that are formed
within the object’s boundary as shown in sub-figures labelled (i)-
(vii) in Figure 5(a). It can be seen in the top left image labelled (i)
that cell-based segmentation process has formed several groups,
among all, two groups are formed on real building objects. Fi-
nally, a rule-based procedure is adopted that is based on LiDAR
points height difference, NDVI, and entropy, the cumulated cells,
which are confined within the boundary, are eliminated and two
occluded buildings are recovered. The final detected buildings
and their corresponding boundaries are shown ‘yellow‘ in colour
filled with red, while the groups/clusters marked for elimination
have no boundary around.

Figure 5. (a) Vegetation removal and recovery of occluded build-
ings, (b) Detected buildings

The same operation is performed for all the building objects ex-
tracted from the last phase. It can be observed in Figure 5(a), all
buildings labelled from (ii) to (vii) are well delineated and cover
the actual building region. The outcome of this procedure can be

seen in Figure 5(b), where false buildings have been removed, oc-
cluded buildings are recovered and building boundaries are well
delineated.

(a) (b)

Figure 6. (a) Buildings before boundary expansion, (b) Final de-
tected buildings

The boundaries of finally detected buildings in Figure 5(b) and
Figure 6(a) are well outlined but they sometimes lack in a com-
plete rooftop coverage due to large grid size as compared to the
image resolution. Similar to the grid-based segmentation process,
we accumulate pixels into boundary instead of cells and grow
the boundary region towards edges for accurate delineation of
the building boundary. For pixel based extension procedure, we
first determine all the corresponding pixels of a building bound-
ary and grow the boundary pixels in 8-neighbourhood fashion.
For all new pixels, which does not lie within the already estab-
lished boundary, we compute the pixel NDVI and height of their
respective LiDAR data points. The pixel is included as a new
boundary pixel based on comparison with average NDVI of pix-
els and LiDAR points average height within the boundary. Sim-
ilarly, rest of the boundary pixels including new pixels, if any,
are processed. We repeat the same process for all the buildings.
The pre-expansion and post-expansion boundaries can be seen in
Figure 6(a) and Figure 6(b) respectively. The later figure shows
the final building boundaries that cover the building rooftop well
close towards the building edges and will be used for evaluation
purpose.

4. EXPERIMENTAL RESULTS AND DISCUSSION

To evaluate the performance of the proposed approach, two test
data sets from two different sites are used. The objective eval-
uation follows a modified version of a previous automatic and
threshold-free evaluation system (Awrangjeb and Fraser, 2014a).

4.1 DATA SETS

The test data sets as shown in Figure 7 cover two urban areas in
Queensland, Australia: Aitkenvale (AV) and Hervey Bay (HB).
The AV data set has a point density of 29 points/m2 and com-
prises of a scene that covers an area of 214m x 159m. This
scene contains 63 buildings, out of those four are between 4 to
5 m2 and ten are between 5 to 10 m2 in area. The HB data set
has one scene and covers 108m x 104 m and contains 25 build-
ings. Both of these data sets contain mostly residential buildings
and can be characterised as urban with medium housing density.
The HB scene has low tree coverage that partially covers build-
ings but the AV site has densely vegetation and heavily occluded
buildings. In terms of topography, both the sites are flat.
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(a) (b)

Figure 7. Data sets with reference boundary: (a) Aitkenvale, (b)
Hervey Bay

4.2 EVALUATION SYSTEM

In order to assess the performance of the proposed method, the
automatic and threshold-free evaluation system (Awrangjeb and
Fraser, 2014a) has been employed. It offers more robust object-
based evaluation of building extraction techniques than the threshold-
based system (Rutzinger et al., 2009) adopted by the ISPRS bench-
mark system. It makes one-to-one correspondences between de-
tected and reference buildings using the maximum overlaps, es-
timated by number of pixels. If a reference building rr and a
detected building rd overlaps each other and they do not overlap
any other entities, a true-positive (TP) correspondence is simply
established. If a detected building rd does not overlap any rr ,
then it is marked as a false positive (FP). Similarly, if a refer-
ence building rr does not overlap any rd, then it is marked as a
false negative (FN). In any other cases, an rd overlaps more than
one rr and/or an rr overlaps more than rd. In these two cases, a
topological clarification is executed to merge or split the detected
entities.

The reference data sets overlaid on the two test data sets, as shown
in Figure 7, are used. The objective evaluation uses different eval-
uation metrics for three different types of evaluation categories:
object-based, pixel-based, and geometric. For object-based met-
rics, completeness, correctness, quality, under- and over-segmentation
errors give an estimation of the performance by counting the num-
ber of detected objects in the study. Whereas pixel-based metrics
such as completeness, correctness and quality measures deter-
mine the accuracy of the extracted objects by counting the num-
ber of pixels. In addition, the geometric metric, root mean square
error (RMSE), indicate the accuracy of the extracted boundaries
with respect to the reference entities. Moreover, the number of
over- and under-segmentation cases are estimated by the num-
ber of split and merge operations required during the topological
clarification.

The minimum areas for large buildings and small buildings have
been set to 50m2 and 10m2, respectively, in Awrangjeb and Fraser
(Awrangjeb and Fraser, 2014b). Thus, the object-based complete-
ness, correctness and quality values will be separately shown for
large buildings and small buildings.

4.3 EVALUATION RESULTS

Figures 8 and 9 show the extracted buildings for the AV and HB
data sets. The preceding figure also shows some complex cases,
where the proposed method has not only detected small build-
ings but has also recovered the occluded buildings successfully.
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(b) (c) 

(d) (e) (f) 

(h) (i) 

(k) 
(l) 

(n) 

(o) 

(g) 

(j) 

(m) 

Building missed! 

Building detected 

Under extension

Figure 8. (a) Building detection on AV data set, (b)-(g) Magni-
fied version of the buildings detected under complex scene, (h)-(i)
Boundary over-extension, (j)-(m) Undetected buildings, (n)-(p)
Boundary under-extension

For quantitative analysis of proposed method, object-based eval-
uation results are presented in Table 1, while pixel-based and ge-
ometric evaluation results are given in Table 2, respectively.

(a) (b)

(d)

(c)

Figure 9. (a) Hervey Bay reference data set, (b) Detected build-
ings

The proposed technique is equally effective in both test areas.
If we consider all reference buildings irrespective of their areas,
the average completeness and correctness in object-based evalu-
ation is above 92% with an average quality of about 92% (Table
1). All the buildings detected from Aitkenvale test scene can be
seen in Figure 8(a). The magnified figures from (b) to (g) show
some complex cases, where buildings are completely occluded
by nearby dense vegetation. Two such buildings can be observed
in Figure 9(b). Building (d) is of equal height of the surrounded
vegetation and building (c) is close enough to a large building.

The sub-figures (h) and (i) in Figure 8 show the cases where over
extension of building boundaries can be observed. This phe-
nomenon occurred due to misregistration between LiDAR data
and the corresponding multispectral image. During the pixel based
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Areas Cm Cr Ql Cm,50 Cr,50 Q1,50 Cm,10 Cr,10 Q1,10

AV 84.62 100 84.62 100 100 100 91.67 100 91.67
HB 100 100 100 100 100 100 100 100 100
Avg 92.31 100 92.31 100 100 100 95.83 100 95.83

Table 1. Building detection results: object-based evaluation for the Aitkenvale (AV ) and Hervey Bay (HB) data sets in percentage.
Cm = completeness, Cr = correctness and Ql = quality, are for buildings of 50m2 and 10m2

Areas Cmp Crp Qlp Aoe Ace RMSE Cm,50 Cr,50 Cm,10 Cr,10

AV 88.85 96.71 86.25 11.14 3.28 0.58 91.0 96.71 89.32 96.71
HB 86.95 96.72 84.45 13.0 3.28 1.18 86.95 96.71 86.95 96.71
Avg 87.90 96.72 85.35 12.07 3.28 0.8 88.97 96.71 88.14 96.71

Table 2. Building detection results: pixel-based evaluation for the Aitkenvale (AV ) and Hervey Bay (HB) data sets in percentage.
Cmp = completeness, Crp = correctness and Qlp = quality, Aoe = area omission error and Ace = area commission error in percentage,
RMSE = planimetric accuracy in metres

segmentation (last step), the NDVI value and average height of
LiDAR points in that particular region, were laying well within
the rule window that caused boundary to extend on tree bush and
ground for buildings (h) and (i) respectively. The similar phe-
nomenon can be observed from Figure (d) in 9(b), where part of
bush was also included into the boundary due to similar height of
building.

The buildings encircled with red ovals in Figure 8 (j)-(m) were
not detected due to transparent roof material. These buildings
have also been marked to their corresponding positions in Figure
8(a). These buildings were eliminated while generating primary
building mask in first step because there were not LiDAR returns
recorded for these buildings. But small sized umbrella (k) was
missed due to extremely small sized and misalignment between
both input data sources. The buildings (n) and (o), marked with
‘yellow‘ coloured oval in Figure 8(a), are the cases where build-
ing boundaries were not expanded towards building edges. The
reason that actually stopped the boundary extension procedure
in case of building (n) was a variation in LiDAR data height in
the neighbourhood due to nearby vegetation. But the building
(o) suffered merely because of misalignment between two data
sources.

It is quite evident from Table 1 that the proposed technique has
not only detected buildings larger than 50m2 with 100% accu-
racy but has also extracted low height buildings with equal ac-
curacy. As further can be noticed from Table 2, which tabu-
lates pixel-based evaluation results, the average completeness,
and quality values are even 2 to 4% higher than those in the
object-based evaluation for the AV site. It can further be seen
that our proposed algorithm offers an average accuracy of about
89% and 96% in pixel-based completeness and correctness for
buildings larger than 50m2, while at the same it gives an average
accuracy of around 88% and 96% in pixel-based completeness
and correctness for buildings smaller than 10m2 respectively.

4.4 COMPARATIVE PERFORMANCE

The method proposed in this research outperforms the algorithm
reported in (Awrangjeb and Fraser, 2014b) in completeness and
correctness for both object-based and pixel-based evaluation. For
the AV site, our proposed algorithm showed significantly better
object-based accuracy than (Awrangjeb and Fraser, 2014b)–91%
vs 67%, for the buildings smaller than 10m2. Similarly, in terms
of pixel-based accuracy, our proposed method offers 88% as com-
pared to 86% of Awrangjeb’s technique when all building objects
are considered.

The visual comparative results of both detection techniques re-
ported in (Awrangjeb and Fraser, 2014b) and proposed algorithm

are shown in Figure 10 (a) and (b) respectively. We can clearly
observe that Awrangjeb’s algorithm fails to detect 11 buildings
highlighted in red colour whereas the corresponding buildings de-
tected by our proposed algorithm are shown in 10(b). Addition-
ally, it can be noticed from building marked by yellow coloured
oval in 10(a) that Awrangjeb’s method fails to completely delin-
eate the building, thus, indicate under-segmentation issue. But
the corresponding yellow coloured oval in 10(b) shows that the
proposed algorithm can successfully delineate the extended build-
ing parts efficiently.

But in case of the HB site, both the algorithms offer the same
object-based accuracy for larger buildings. However, the pixel-
based completeness of the proposed technique is 96% as of 93%
by (Awrangjeb and Fraser, 2014b) for buildings larger than 50m2.

(b)(a)

Figure 10. (a) Buildings missed by Awrangjeb(2014) detection
technique, (b) Building detection result of proposed method

5. CONCLUSION

The automatic extraction of accurate building boundaries is an
important geo-spatial information that is indispensable for several
applications. The most challenging factor confronted in boundary
delineation is building shape variability and surrounding environ-
ment complexity. In order to deal with various building types, this
research presents a new method for automatic building detection
through an effective integration of LiDAR data and multispectral
imagery.

The proposed approach yields the complementary advantages from
both the LiDAR data and multispectral image. The initial build-
ing positions are obtained after connected component analysis
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carried on primary building mask, derived from LiDAR data.
Later on, several building features are extracted from multispec-
tral image that are progressively used in different stages to elim-
inate false objects and vegetation, detect buildings, and delineate
the corresponding building boundaries.

The final building boundary is obtained by extending the initial
position using both the data sources: features extracted from im-
age and LiDAR data. The whole procedure imposes no constraint
on building shape variability and surrounding environment. This
method is fully data-driven, self-adaptive and avoids the under-
segmentation and over-segmentation issues. The proposed method
is not only capable of detecting small buildings, but can also sep-
arate the buildings from surrounding dense vegetation and close
buildings.

In future, the segmented lines extracted from multispectral im-
agery will be incorporated to obtain better planimetric accuracy
and to generate the building footprints. This would help to de-
velop 2D representation and reconstruction of roof features (e.g.
roof planes, chimneys, and dorms) with the integration of LiDAR
data. The accuracy and performance of the proposed approach
will further be analysed on ISPRS benchmark data sets with dif-
ferent LiDAR resolutions.
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