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ABSTRACT: 

 

Wind damage is known for causing threats to sustainable forest management and yield value in boreal forests. Information about 

wind damage risk can aid forest managers in understanding and possibly mitigating damage impacts. The objective of this research 

was to better understand and quantify drivers of wind damage, and to map the probability of wind damage. To accomplish this, we 

used open-access airborne scanning light detection and ranging (LiDAR) data. The probability of wind-induced forest damage 

(PDAM) in southern Finland (61°N, 23°E) was modelled for a 173 km2 study area of mainly managed boreal forests (dominated by 

Norway spruce and Scots pine) and agricultural fields. Wind damage occurred in the study area in December 2011. LiDAR data were 

acquired prior to the damage in 2008. High spatial resolution aerial imagery, acquired after the damage event (January, 2012) 

provided a source of model calibration via expert interpretation. A systematic grid (16 m x 16 m) was established and 430 sample 

grid cells were identified systematically and classified as damaged or undamaged based on visual interpretation using the aerial 

images. Potential drivers associated with PDAM were examined using a multivariate logistic regression model. Risk model predictors 

were extracted from the LiDAR-derived surface models. Geographic information systems (GIS) supported spatial mapping and 

identification of areas of high PDAM across the study area. The risk model based on LiDAR data provided good agreement with 

detected risk areas (73 % with kappa-value 0,47). The strongest predictors in the risk model were mean canopy height and mean 

elevation. Our results indicate that open-access LiDAR data sets can be used to map the probability of wind damage risk without 

field data, providing valuable information for forest management planning. 
 

 

                                                                 
*  Corresponding author. 

1. INTRODUCTION 

Forest damage caused by natural disturbances, such as wind and 

snow, have increased in recent years. As an example in 2012 

wind was the most significant abiotic factor causing losses in 

forest yield in Finland (Heino & Pouttu 2013). This damage has 

an impact on forest yield value but also to sustainable use of 

forests. With accurate and detailed information about areas that 

are at risk to snow or wind damage forest owners and managers 

could provide for and possibly even mitigate effects of damage. 

Sites at risk need to be identified in order to incorporate needed 

forest management actions into forest management plan. Wind 

damage does not affect only to yield value of forest and forest 

holdings that are mainly privately owned in Finland but also to 

those households which rely on Finland’s electricity network. 

Most of the regional power lines that distribute electricity to 

households are located inside forest, thus these networks are 

very vulnerable to fallen trees and cut branches that harm the 

power lines. When electricity is not available, electricity 

companies, who own and maintain these regional networks, 

must compensate customers. Wind damage is the main reason 

for interruptions in the supply of electricity (Finnish Energy 

Industries 2013), thus information about high wind damage risk 

areas is needed also in electricity companies who do not have 

access to the forest resource information or forest management 

plans of private forest owners. 

 

Airborne scanning light detecting and ranging (LiDAR) data 

can provide spatially accurate wall-to-wall coverage and can be 

applied in even tree-level mapping applications. In addition to 

to producing accurate stand attributes for forest management, 

LiDAR data show great promise for monitoring and modelling 

needs in forestry (Yu et al. 2004; Næsset & Gobakken, 2005; 

Hopkinson et al. 2008; Härkönen 2012; Vastaranta et al. 2012). 

Although multitempral LiDAR data sets enable change 

detection even at branch level (Yu et al. 2004), they are best 

suited for monitoring of the dominant trees. In addition 

multitemporal LiDAR is highly capable of monitoring abiotic 

tree or stand level changes (e.g. Yu et al. 2004, Vastaranta et al. 

2013, Vastaranta et al. 2012, Honkavaara et al. 2013). Spatial 

modelling of natural disturbances incorporating LiDAR data to 

date is mainly focused on generating accurate digital terrain 

model (DTM) for modelling purposes (e.g. Gueudet et al. 2004, 

Agget & Wilson 2009, Hohental et al. 2011, Liao et al. 2011) 

although other applications are emerging (e.g. Montealegre et 

al. 2014). In addition to DTM, digital surface model (DSM) is 

another product commonly produced by LiDAR data provides. 

These two models are used in creation of canopy height model 

(CHM) which correlates with many variables in forested areas 

that have been used to predict wind damages, such as tree 

height, crown size, and stem density (Lohmander & Helles, 

1987; Wright & Quine, 1993; Peltola et al. 1999; Jalkanen & 

Mattila 2000). 

 

The objective of this research was to better understand and 

quantify drivers of wind damage, and to map the probability of 

wind damage and to provide information that could be used to 

support decision making in forest management planning, as well 
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as in other sectors (e.g. electricity companies). To accomplish 

this, we used open-access airborne LiDAR data-derived 

predictor variables in spatial modelling and mapping the 

probability of forest damage (PDAM). 

 

 

2. MATERIALS 

2.1 Study area 

The study area is located in southwestern Finland with center 

coordinates 61°4′33″N, 22°52′3″E (Fig. 1) and covers 

approximately 173 km2. The area comprises mainly managed 

boreal forests and agricultural fields. The main tree species were 

Scots pine (Pinus sylvestris, L.), Norway spruce [Picea abies 

(L.) H. Karst], and Silver and Downy birches (Betula spp.). The 

area is relatively flat with a terrain height range of 

approximately 50 to 111 m above sea level (asl) (deviation 12 

m). On 26th and 27th of December 2011, the area was subjected 

to heavy winter storm called, which was the strongest storm in 

Finland in a decade (Finnish Meteorological Institute 2011). 

The storm caused extensive damage to the forest in the study 

area with the most damaging west and northwest winds blowing 

at an average speed of 18,3 m/s and a maximum speed of 28,7 

m/s on the morning of December 26th 2011. 

 
Figure 1. Study area. 

 

2.2 LiDAR data 

As the before-storm information open-access LiDAR data, 

obtained from the National Land Survey of Finland (NLS), 

were used. The NLS provides the data openly and freely for 

public use. According to the metadata afforded by the NLS the 

flying altitude of airborne LiDAR was 2,000 m, a maximum 

scan angle was ±20° and size of a footprint was 50 cm. Since 

DTM generation is the main use of these data the 

aforementioned specifications are used to optimize laser 

penetration to the forest floor, thus preferential collection times 

is during a bare-ground season or during spring time, when the 

trees have small leaves. The minimum point density of the NLS 

LiDAR data is 0,5 point/m2 and the elevation accuracy of the 

points in well-defined surfaces is 15 cm with a horizontal 

accuracy of 60 cm. The LiDAR data used in this study were 

collected in 2008 during the spring. In the point clouds, the 

ground returns were already classified by the NLS by using the 

standard procedure developed by Axelson (2000). LasTools 

software (Isenburg, 2013) was used to merge the map sheets of 

NLS LiDAR data that covered the study area and to make a 

digital terrain model (DTM) and a digital surface model (DSM) 

of the point cloud with 1 m grid spacing. 

 

2.3 Aerial images 

Aerial imagery was acquired by Blom Kartta Oy © (Helsinki, 

Finland) on 8th of January 2012 to document the event of wind 

damage. The images were acquired using a Microsoft 

UltraCamXp (Microsoft UltraCam 2013), large-format mapping 

camera. The average flying height was 5,370 m above ground 

level (AGL) provided a ground sample distance (GSD) of 32 

cm. The images were collected in a block structure, with 16 

image strips and approximately 30 images per strip; the forward 

overlaps were 65%, and the side overlaps were 30%; the 

distances of the image strips were approximately 3,900 m. The 

atmosphere was clear, and the solar elevation was as low as 5°–

7°. The data were collected between 11:56 am and 14:11 pm 

local time (UTC +2). Before the aerial images were collected, 

the first snow had fallen, so that there was approximately 10–20 

cm snow cover on ground. It is likely that there was also some 

snow on trees, but visual evaluation on images indicated that it 

was not significant (there is no ground truth data about this). 

These were very unusual and extreme conditions for a 

photogrammetric mapping project. Photogrammetric processing 

of used panchromatic images is explained in more detail in 

Honkavaara et al. (2013). 

 

 

3. METHODS 

3.1 Sample selection 

Damaged areas needed to be mapped before it was possible to 

use spatial modelling in wind damage probability. The study 

area was and remote sensing data sets were the same that were 

used in Honkavaara et al. (2013). Honkavaara et al. (2013) 

developed and evaluated a method based on pre-storm LiDAR 

CHM and post-storm aerial imagery-derived CHM (normalized 

with LiDAR-based DTM) to detect wind damage. With that 

approach they were able to map wind-damaged forest stands 

with an accuracy of 100% for damaged and undamaged areas, 

52% for minor damage, and 36% for low damage. We used this 

automated damage detection as stratification for our sample 

selection to obtain approximately equal samples in damaged 

and undamaged forest areas. A systematic grid (16 m x 16 m) 

was placed over the study area and 500 sample grid cells (i.e. 

sample plots) were selected across the study area (250 in each 

of the damaged and undamaged strata). Then, the damage-no 

damage-classification of each sampled grid cell was verified 

visually from the orthorectified aerial imagery acquired in 

January 2012. A sample plot was determined as damaged if 

there were a group of damaged trees (i.e. one fallen tree was not 

enough). During the visual inspection, 70 sample plots were 

removed because they were located in somewhere else than in 

forest (i.e. on an agricultural field, a road) or they were adjunct 

to field, road, a house, or other infrastructure. After visual 

inspection there were 430 sample plots for further analysis; 196 

were classified as damaged and 234 as undamaged. 
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3.2 Predictor variable extraction 

A 1 m resolution CHM was generated by subtracting DTM from 

DSM. Predictor variables for spatial modeling of PDAM were 

extracted from the LiDAR data (Appendix) for the sample plots 

(16m x 16m). Mean elevation above sea level (ASL), slope, and 

mean value of CHM were extracted for each plot and for a 

window of nine 16m x 16m grid cells (including the sample 

plot). Aspect was calculated as a categorical variable (i.e. 

northeast, southeast, southwest, and northwest) in order to 

capture the effects of direction of the damaging winds, namely 

northeast. Other predictors were mainly extracted for the sample 

plots and some also to their respective eight grid-cell-buffer 

areas (see Appendix for the explanations). 

 

An estimate for forest vertical canopy cover (VCC) was 

computed by including all the points that were higher than 2 

meters (CHM > 2m), which is commonly used threshold value 

for vegetation points (White et al. 2013). Open areas were 

extracted from the CHM where there were no canopy cover 

(defined using VCC) and contiguous area was larger than 1 ha. 

Although there may have been some low vegetation in areas 

where CHM was less than 2 m, it was presumed that wind can 

also cause damages to sites adjunct to low vegetation (often 

sapling sites). Distance to an open area (DIST) was calculated 

to the nearest open area of each sample plot and closeness 

(Close) was determined whether a sample plot was next to an 

open area or not. 

 

3.3 Logistic regression model 

Logistic regression (LR) is commonly used for modelling the 

probability of an event based on predictor variables (e.g. 

elevation, slope, tree species, and height of trees). The discrete 

nature of the dependent variable in our study (i.e., damage, no 

damage) was well suited to the use of LR. It has been applied 

widely in forestry to estimate tree and stand survival under 

competition (e.g., Monserud, 1976; Vanclay, 1995; Monserud 

& Sterba, 1999; Shen et al. 2000; Yao et al. 2001; Vastaranta et 

al. 2012) but also snow and wind damages (Valinger & 

Fridman, 1997; Canham et al. 2001; Scott & Mitchell, 2005; 

Vastaranta et al. 2011). In the field of remote sensing, logistic 

regression has been used for land cover change detection (e.g., 

Fraser et al. 2003; Fraser et al. 2005), modelling the impact of 

insect damage (Lambert et al. 1995; Ardö et al. 1997; 

Magnussen et al. 2004; Fraser & Latifovic, 2005; Wulder et al. 

2006), but also in mapping the risk of fire severity (Montealegre 

et al. 2014).  

 

In logistic regression the probability of an even to occur is the 

dependent variable which is transformed into a logit variable to 

make linearize the relationship between the response variable 

(i.e. probability) and the explanatory variables. The logit 

variable is calculated here as the neperian logarithm (ln) of the 

ration of the probability of success (p) over the probability of 

failure (q =1 - p), this ratio is also called as the odds of success. 

Generalized for n independent predictor variables (x1 ,. . ., xn) 

the logistic regression model can be presented as in equation 

(1): 

 

  x...xp1
pln)p(itlog nn110 









  (1) 

 

where  ln = the neperian logarithm 

 p the probability of success (i.e., damaged) 

 β0, β1, βn = regression parameters 

 x1, xn = the variables explaining the probability 

 

The predictor variables (xi) it can be either continuous or 

discrete and randomly distributed or not. 

 

Logistic regression is not subjected to many of the restrictive 

assumptions of ordinary least squares regression (OLS) (i.e. 

normal distribution of the dependent variable and error terms, 

homogeneity of variance, interval or unbounded independent 

variables) (Press & Wilson, 1978; Rice, 1994) because logistic 

regression calculates changes in the logit variable, not in the 

dependent variable itself (Hosmer & Lemeshow, 2000). 

However, when applying the estimated LR model to predict 

wind damage probabilities (PDAM) for the study area, the 

predicted probabilities were calculated by transforming them 

back to their original scale (Eq. 2):  
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 
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
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



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
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


e1
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p1
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p1
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  (2) 

 

In order to interpret the LR coefficients (β0, β1, etc.) they need 

to be converted from logistic scale into odds ratios by 

exponentiating the coefficients. Exponentiated coefficients (eβ0, 

eβ1, etc.) can be interpreted as change of the odds of the event of 

interest (wind damage) to happen when that specific predictor 

variable changes one unit and other variables are hold at a fixed 

value. The signs of the coefficients (β0, β1, etc.) indicate if the 

ratio-change in the odds of wind damage is increasing or 

decreasing. To further interpret the exponentiated coefficients 

we calculated the percentage change in the odds (Eq. 3). 

 

  100*1e     (3) 

 

3.4 Predictor variable selection 

 

Potential predictor variables were tested using logistic 

regression analysis in R (v. 3.1.1, R Development Core Team, 

2007). Predictors of wind damage were selected based on 

previous studies (Peltola et al. 1999; Jalkanen & Mattila, 2000; 

Hanewinkel et al. 2008), by analyzing the sample plot data, 

correlations, and on preliminary modelling results. Thus, the 

predictor variables were chosen on the basis of biological 

plausibility as well as statistical significance. Preliminary 

models were also compared using Akaike’s information 

criterion, AIC (Eq. 4):  

 

    k2Llog2AIC    (4) 

 

where  L= maximum likelihood function for a model 

 k = number of independently adjusted parameters within 

the model 

 

AIC is a measure of relative quality of a model, thus it estimates 

relative information loss by using certain model and it can be 

used in selecting a model from a set of models by selecting a 

model with minimum AIC value (Akaike, 1974). 

 

After the selection of preliminary predictor variables, final 

predictors were selected using stepwise logistic regression with 

both forward and backward selections. The maximum number 

of steps to be considered was 1000.  
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3.4 Model validation and mapping 

When verifying the significance that each predictor variable had 

for the model, we used Wald z-statistics (Hosmer & Lemeshow 

2000) and their associated p-values. In other words, the Wald 

test works by testing a null hypothesis where one or several 

parameter of interest is equal to zero, i.e. removing them from 

the model will not substantially affect the prediction results. A 

predictor variable with a small coefficient relative to its 

standard error would not improve the prediction of the 

dependent variable (Stata FAQ 2014). When selecting the 

predictor variables we decided the statistical significance of p-

values of Wald z-statistics needed to be at a maximum of 0.01 

for the predictors in order to be sufficiently strong. Overall 

prediction accuracy was also used when comparing different 

combinations of predictor variables. A Likelihood Ratio Test 

(LRT) was used to measure how well our model fits (i.e., the 

significance of the overall model). LRT tests a null hypothesis 

of whether the created model with those selected predictor 

variables fits significantly better than a model with just an 

intercept (Hosmer & Lemeshow 2000). 

 

Probability of wind damage (PDAM) was calculated for entire 

study area which resulted with a continuous surface which we 

called a risk map. The risk map allowed us to identify the areas 

of high risk across the study area. In risk map the employed cell 

size (16 m x 16 m) was the same that was used when sample 

cells (plots) were selected. If the predicted risk probability was 

over 0.5, it was interpreted as damage. Accuracy of risk map 

was evaluated by comparing it to the reference obtained by 

visual interpretation of aerial images. Two-scheme classification 

accuracy percentage and Cohen’s kappa value (Cohen 1960; 

Gramer et al. 2014) were calculated for the risk map (Eq. 5). 

 

   
 ePr1

ePraPrK



   (5) 

 

where  Pr(a) = the overall agreement among raters 

 Pr(e) = the expected chance agreement (if agreement 

occurs by chance only) 

 

If the raters are in complete agreement then K = 1. If there is no 

agreement among the raters other than what would be expected 

by chance (as defined by Pr(e)), K = 0. 

 

 

4. RESULTS 

4.1 Factors explaining the event of wind damage 

Variables describing forest structure were calculated from 

CHM. CHMmean and CHMmax can be expected to explain stand 

maturity and they were higher in damaged plots (means: 9,7 m 

vs. 7,3 m and maximum values: 21,3 m vs. 19,8 m), thus it can 

be expected that the damaged plots were more mature. Most of 

the sample plots (86,7 %) were located inside forest stands and 

based on our analyses there were no trend that plots adjunct to 

an open area would be more vulnerable to wind damage. 

Estimate for VCC derived from the CHM can be expected to 

describe density of forest. VCC was higher for damaged areas 

(79,4 %) than for undamaged areas (68,8 %) indicating that 

dense canopies may be more sensitive to the wind. The mean 

height of surrounding forest of damaged sample plots was 

bigger (9,1 m) than of undamaged plots (6,2 m). 

 

Topography-related variables derived from the DTM indicated 

that undamaged sample plots were in slightly steeper slopes 

(undamaged 6,3° vs. damaged 5,5°). Local topography variation 

(DTMsd) was slightly larger in undamaged areas (0.37 m vs. 

0.33 m). On average damaged sample plots located five meters 

higher elevation (asl) (81,0 m) than the undamaged plots (76,0 

m).  

 

4.2 Selection of predictor variables and mapping the winda 

damage probability 

The highest correlations (r=0,99) were found between DTMmean 

and DTMmax as well as DTMmean and ASL27m. CHMmean, on the 

other hand, was highly correlated with H27m (r=0,85) and with 

CHMmax (r=0,57). For other pairs of LiDAR-derived variables 

the correlations were low (r<0,5). After investigating 

correlations between different predictor variables, the predictor 

variables that were not highly (r>0,5) correlated or depended 

with each other were entered to the automatic stepwise selection 

of predictors. There were various combinations with the 

LiDAR-derived predictor variables to enter the selection of 

predictors.  

 

Closeness to an open area was assumed to be significant 

predictor variable for the model; however, because the majority 

of sample plots were located inside forest stands, in our data the 

closeness variable was not a significant predictor when entered 

to the model. On average, the sample plots had taller trees than 

their surrounding forest in the direction where the storm winds 

came (west and northwest). This resulted with a decrease in the 

modelled damage probability, and since it was not statistically 

significant to the model, predictor describing the mean height of 

the tree in west and northwest (Hwind) was not included in the 

final model. 

 

Mean height around the sample plots (plot area included) gave 

better results than mean height only within the sample plots, 

thus H27m was used over CHMmean in the model. The predictor 

variables that were selected for the LR model applied for 

modelling the damage probability (PDAM) included mean 

elevation (DTMmean) and mean height of surrounding forest 

(H27m) (Table 2). The selected LR model produced 73 % 

prediction accuracy with Kappa value of 0,47 and chi-square of 

likelihood ratio test (LRT) 209,70 with respective p-value less 

than 0,0001.  

 

Predictors Estimate Std. Error z 

value 

Pr(>|z|) 

Intercept -6.97 0.922 -7.559 0.000 

DTMmean 0.05 0.010 5.326 0.000 

H27m 0.36 0.042 8.611 0.000 

Predictors eβ % change 

in odds 

Wald Wald 

sig. 

Intercept   57.1 0.000 

DTMmean 1.053 5.31 28.4 0.000 

H27m 1.430 43.05 74.2 0.000 

Table 2. Parameters and fit statistics for the logistic regression 

model with mean elevation (DTMmean) and mean height around 

sample plots (H27m) as predictor variables. 

 

LR model was used to estimate the probability of wind damage 

for the entire study area. Model output was a continuous 

probability surface or risk map (Figure 3), whereby the 

probability for wind damage is interpreted as risk (e.g. areas 
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with a high probability of wind damage can be described as 

high risk areas). 

 

 
Figure 3. Risk map produced by calculating wind damage 

probability to the entire study area (cell size is 16 m x 16 m). 

 

 

5. DISCUSSION 

The main aim of this research was to investigate the 

applicability of open access LiDAR data for modelling and 

mapping the probability of wind damage at a 256m2 resolution 

in our study area in southern Finland. The spatial resolution was 

selected to be the same that is applied in LiDAR-based 

operational forest-management-planning inventory in Finland. 

Wind damage events have increased in recent years and there is 

a need to identify areas of high risk in order to include 

alternative management actions into forest management 

planning but also to respond to information needs in other 

sectors (e.g., electricity providers).    

 

A logistic regression approach was used to model the wind 

damage probability (i.e. wind damage risk) because it has been 

widely applied in the modeling of forest disturbances (Valinger 

& Fridman 1997; Fraser & Latifovis 2005; Wulder et al. 2006; 

Hanewinkel et al. 2008; Vastaranta et al. 2012). The damaged 

plots were located at higher elevations and mean canopy height 

was higher in damaged plots than in undamaged plots. In our 

analyses, the most important spatial factors explaining the 

probability of wind damage (PDAM) were DTMmean and H27m. 

The predictor H27m described the mean value of CHM from a 

window of nine 16 m x 16 m grid cells, including the sample 

plot, and it provided more predicative power than mean height 

within a sample plot (CHMmean). As expected, these two 

variables (DTMmean and H27m) describing local topography and 

canopy height can provide valuable information on the damage 

probability (i.e. risk) in a robust way. This is also supported by 

previous research (Valinger & Fridman, 1997; Peltola et al. 

1999; Jalkanen & Mattila 2000; Hanewinkel et al. 2008) where 

wind damage risk factors were studied with extensive sample 

plot data sets without risk mapping.   

 

Surface models such as DTM and CHM are more robust for 

different flight and scanning parameters than 3D LiDAR point 

metrics that are generally used in area-based forest inventory 

(e.g. Næsset 2002; White et al. 2013). Because we wanted to 

have a robust model without a need for campaign-to-campaign 

or sensor-to-sensor calibration which is required when 3D point 

metrics are used, the LiDAR 3D point metrics were not used in 

the modelling. In addition, LiDAR surface models, such as 

DTM and DSM are usually readily available products that a 

user can order without a need of further knowledge about 

LiDAR processing.  

 

The mean height of adjunct forest in the source wind direction 

of the sample plots was considered to offer shelter effect for the 

sample plots. However, on average the mean height of the 

damaged plots was higher than the mean height of the assumed 

shelter forest in northwest where the most destructive winds 

were blowing in our study area. Thus, the risk of wind damage 

decreased as the mean height of forest in the source wind 

direction increased which provided evidence about the shelter 

effect of the adjunct forest in northwest. 

 

The study area is relatively flat where terrain heights do not 

vary significantly (standard deviation of DTM at the sample 

plots was 12 m) which we assumed to be the reason for the fact 

that slope and aspect were not significant factors in explaining 

the wind damage probability in the modelling. Another variable 

that was expected to have an effect on PDAM but in the end was 

not significant in our study was the distance to open area 

(Close). This may be due to the unique configuration of open 

and forest areas in our study site and merits further investigation 

(e.g. how much the unfrozen ground had an impact at the time 

when the damage occurred).  

 

We used the output from the logistic regression, that was a 

probability of damage occurring, to produce a risk map 

describing the likelihood that any given grid cell has wind 

damage. We gained 73 % prediction accuracy with the logistic 

regression model compared to visual interpretation when 

predicting the probability of damage or no damage. This means 

that if similar storm would happen in similar conditions (such as 

temperature, soil moisture, wind direction etc.) we would be 

able to map the risk of the damage with high accuracy. In 

practice, much lower accuracies will be obtained due to 

variation in many natural factors. 
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6. CONCLUSIONS 

The results of this study substantiated the applicability of open-

source remote sensing data to map wind damage probability 

(PDAM). One implication is the generation of a continuous 

probability surface to represent the risk of wind damage. This 

probability surface was presented in this study as a risk map of 

wind damage. This risk map provides forest managers, owners, 

and authorities as well as electricity companies with much 

needed information for planning. Moreover, our results show 

that the LiDAR data, which are spatially extensive and 

increasingly openly accessible, can be used alone to estimate 

PDAM with acceptable levels of accuracy if detailed forest 

resource information is unavailable or outdated. 

 

Use of the freely and openly accessible LiDAR data for 

estimating the risk of wind damage, as demonstrated herein, 

provides an example of additional beneficial uses for these data 

sets. Increasing the value of the open-access data is one of the 

objectives in collecting detailed forest resource information in 

Finland and this study serves that purpose. 
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APPENDIX 

 

Predictor Description 
Statistics within sample plots 

Min Max Mean Sd 

Slope Slope, 

degrees 

1,57 30,18 5,94 3,46 

Aspect Aspect, 

degrees 

45,50  312,89 177,55 47,51 

DTMmin Minimum 

value of 

DTM, m 

49,36  109,91 77,51 12,26 

DTMmean / 

ASL 

Mean value 

of DTM / 

Elevation, 

m 

50,44  111,08 78,25 12,28 

DTMmax Maximum 

value of 

DTM, m 

51,91  112,14 79,06 12,34 

DTMsd Standard 

deviation in 

elevation, m 

0,06  2,68 0,35 0,32 

CHMmin Minimum 

value of 

CHM, m 

0,00  2,08 0,00 0,22 
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CHMmean Mean value 

of CHM, m 

0,59  20,48 8,42 3,78 

CHMmax Maximum 

value of 

CHM, m 

6,14  31,56 20,49 4,53 

CHMsd Standard 

deviation in 

CHM, m 

1,52  9,63 5,53 1,55 

VCC Vertical 

canopy 

cover over 

2 m, % 

0,08  1 0,74 0,21 

DIST Distance to 

the open 

area, m 

0,00  151,44 22,37 29,86 

ASL27m Mean 

elevation 

from a 

window of 

nine grid 

cells 

(including 

sample 

plot), m 

51,67  110,86 78,19 12,25 

Slope27m Slope from 

a window 

of nine grid 

cells 

(including 

sample 

plot), 

degree 

1,84  24,41 5,95 2,74 

H27m Mean 

height from 

window of 

nine grid 

cells 

(including 

sample 

plot), m 

0,81  17,63 7,53 3,38 

Hsur Mean 

height of 

the forest 

around the 

sample plot, 

m 

0,29  7,26 1,23 0,59 

Hwind Mean 

height of 

surrounding 

forest in a 

direction of 

storm 

winds, m 

0,28  13,61 1,24 0,80 

Table 3. Statistics of the extracted continuous predictor 

variables for the sample plots (n = 430). 

 

 

Predictor Description Distribution of classes 

Aspectpoint Aspect in 

compass points 

NE: 113 

SE: 107 

SW: 108 

NW: 102 

Close Closeness to 

an open area 

Next to an open area: 57 

No next to an open area: 

373 

Table 4. Descriptions of extracted categorical predictor 

variables within sample plots (n=430). 
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