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ABSTRACT: 

 

One of the most popular approaches to process high-density proximal soil sensing data is to aggregate similar measurements 

representing unique field conditions. An innovative constraint-based spatial clustering algorithm has been developed. The algorithm 

seeks to minimize the mean squared error during the interactive grouping of spatially adjacent measurements similar to each other 

and different from the other parts of the field. After successful implementation of a one soil property scenario, this research was to 

accommodate multiple layers of soil properties representing the same area under investigation. Six agricultural fields across 

Nebraska, USA, were chosen to illustrate the algorithm performance. The three layers considered were field elevation and apparent 

soil electrical conductivity representing both deep and shallow layers of the soil profile. The algorithm was implemented in 

MATLAB, R2013b. Prior to the process of interactive grouping, geographic coordinates were projected and erroneous data were 

filtered out. Additional data pre-processing included bringing each data layer to a 20x20 m raster to facilitate multi-layer 

computations. An interactive grouping starts with a new “nest” search to initiate the first group of measurements that are most 

different from the rest of the field. This group is grown using a neighbourhood search approach and once growing the group fails to 

reduce the overall mean squared error, the algorithm seeks to locate a new “nest”, which will grow into another group. This process 

continues until there is no benefit from separating out an additional part of the field. Results of the six-field trial showed that each 

case generated a reasonable number of groups which corresponded to agronomic knowledge of the fields. The unique feature of this 

approach is spatial continuity of each group and capability to process multiple data layers. Further development will involve 

comparison with a more traditional k-means clustering approach and agronomic model calibration using a targeted soil sampling. 

 

 

                                                                 

*  Corresponding author  

1. INTRODUCTION 

1.1 General Instructions 

While conventional soil sampling techniques are laborious and 

time consuming, proximal soil sensing (PSS) allows rapid and 

inexpensive collection of high-density data (Viscarra Rossel 

and McBratney, 1998; Viscarra Rossel et al., 2010). To pursue 

various site-specific management practices, spatial data is 

frequently split into groups (clusters or zones) to represent 

significantly different growing conditions (Fraise et al., 2001; 

Ping and Dobermann, 2003). Geo-spatial data clustering is an 

important process (Li and Wang, 2010), which is widely used in 

remote sensing (Deng, et. al. 2003), neuroanatomy analysis 

(Prodanov, et. al, 2007), and other areas. Several different 

spatial clustering algorithms have been developed to group 

geospatially dense PSS-based measurements of soil attributes 

into management zones. For example Management Zone 

Analyst (Fridgen et al., 2004) represents a publicly available 

tool accepted by a number of practitioners. The algorithm is 

based on computing a distance matrix and performing clustering 

over this new distance matrix. It is closely related to the popular 

k-means clustering algorithm, where quality of the resulting 

clusters heavily depends on the selection of initial centroids and 

the results are not repeatable. However, this method requires 

cross-validation to select the best among several runs. (Abdul-

Nazeer and Sebastian, 2009). Although the method allows 

multidimensional data analysis, complexity and frequently 

occurring discontinuities of management zones make this 

technology non-robust for potential users (Kerby et al., 2007; 

Shatar and McBratney, 2001).  

 

Spatial continuity of formed clusters can be achieved by 

restricting grouping measurements that are not adjacent to each 

other (Dhawale et al., 2012) through so called Neighbourhood 

Search Analysis (NSA). This is a form of clustering built on the 

principle of growing new groups of data points or grid cells 

with a fixed size through minimization of the mean squared 

error (MSE). Since previous trials with one measured soil 

attribute revealed positive outcomes, the objective of this study 

was to advance an algorithm to allow multiple data layers to be 

used for delineating spatially constrained groups of high-density 

soil sensor-based measurements. Field elevation and apparent 

soil electrical conductivity (ECa) at two depths obtained from 

six agricultural fields with different levels of spatial structure 

were used to illustrate the performance of the algorithm 

developed. 
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2. MATERIALS AND METHODS 

2.1 Data collection 

Six production fields from Nebraska were mapped using Veris 

3100 (Veris Technologies, Salina, Kansas, USA) galvanic 

contact soil ECa mapping unit equipped with an RTK-level, 

AgGPS 442 (Trimble Navigation Ltd., Sunnyvale, California, 

USA) and a global navigation satellite system (GNSS) receiver.. 

The three data layers were: 1) field elevation 2) deep soil ECa 

(~0-90 cm) obtained with a wide pair of Wanner array 

electrodes and 3) shallow soil ECa (~0-30 cm) obtained using 

the narrow pair of electrodes. Table 1 summarises data from the 

six fields. It has been noted that the two layers of ECa represent 

similar but not identical spatial patterns, while field elevation 

does not always correspond to the overall pattern of changing 

ECa. Therefore, the ideal map of field partitioning would 

delineate areas with different combinations of the three values 

significantly different from the average field conditions. 

 

Field ID Area, ha Mean Range SD 

Field elevation, m 

1 25 1.50 3.20 0.53 

2 46 4.95 17.82 3.99 

3 50 7.10 11.54 2.09 

4 55 8.07 27.44 5.68 

5 67 4.22 8.09 1.60 

6 44 6.15 10.59 2.15 

Shallow ECa, mSm-1 

1 25 0.73 1.58 0.28 

2 46 3.99 13.14 1.67 

3 50 6.21 11.64 1.84 

4 55 2.44 9.04 1.72 

5 67 7.25 9.32 1.88 

6 44 2.29 7.42 0.82 

Deep ECa, mSm-1 

1 25 7.62 27.66 3.76 

2 46 30.24 86.90 14.39 

3 50 4.10 8.68 1.71 

4 55 16.31 61.97 12.06 

5 67 51.01 80.77 14.07 

6 44 25.72 81.74 14.36 
 

Table 1. Summary of data from agricultural fields 

 

2.2 Data pre-processing  

All data processing was accomplished using MATLAB R2013b 

(The MathWorks, Inc. Natick, Massachusetts, USA). To obtain 

three 2D matrices representing each field, sensor-based data 

pre-processing involved four steps: 1) removing erroneous data 

using predefined threshold values of physically feasible 

measurements, 2) 1D data smoothing using a 5-point moving 

average technique, 3) projection of local coordinates according 

to Adamchuk (2001), and 4) 20x20 m averaging of all 

measurements inside each grid cell. Field elevation data were 

relative to the lowest grid cell found in every field. The 

resulting rectangular matrix representing each field covered the 

entire spatial domain. Grid cells outside field boundaries were 

assigned zero values. Therefore, no grid cells inside the fields 

were without corresponding sensor measurements. Smaller grid 

cell size would also be possible, but require more computation 

power. The selected resolution using the total of 600-1500 grid 

cells per field was considered reasonable to reveal field macro-

variability.  

2.3 Data clustering algorithm 

The data clustering algorithm was constructed using an 

assumption that treating a group of adjacent grid cells separately 

form the rest of the field would reduce the MSE between 

individual cell values and the average for corresponding groups:  
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where Xij = sensor-value for ith grid cell within jth group 

 Ẋj = sensor-value average for jth group 

 k = the number of grid cell groups 

 nj = the number of grid cells within jth group 

 N = the total number of non-zero grid cells 

The interactive process of grid cell grouping starts with the 

assumption that all grid cells belong to the group labelled “1” 

designated as “the rest of the field”. Grid cells can be grouped 

together only when they have at least one common side. This 

assumption is typically referred to as “rook’s rule”. Only nine 

neighbouring grid cells in a 3x3 configuration can form a new 

group. The beginning of a new group as well as a merger of a 

new grid cell to an existing group is accepted when the result 

produces the lowest MSE. Group enlargement as well as the 

search for a new group stops when neither action could result in 

further MSE decrease. Figure 1 illustrates the flowchart of the 

algorithm developed.  

 

 
 

Figure 1. Algorithm flow chart 

 

One minus the ratio of the MSE calculated using equation (1) 

and the initial MSE (considering that k = 1) indicates the 

fraction of variability accounted for by the grouping and is 

equivalent to the coefficient of determination (R2) typically used 

to quantify the quality of a linear regression model: 
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As shown by Dhawale et al. (2012), this algorithm can be 

successfully used for a single data layer. To achieve multilayer 

analysis, MSE for each data layer should be minimized and R2 

maximized. This can be realized by multiplying R2 values. 
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Thus, perfect recognition of spatial variability would mean 

R2 = 1 (measured values within each group are exactly the 

same), and R2 < 1 once a fraction of the variability is not 

accounted for. Therefore, the product of three R2 (elevation and 

two depths of EC) will be small if at least one of the three 

multipliers is relatively low. Since MSEk=1 is a constant value, 

the same grid cell grouping result will occur when minimizing 

the product of three MSE estimates as when maximizing the 

product of three R2 values. Quality partitioning of an 

agricultural field would occur when R2 for all the data layers 

would be relatively high with the smallest possible number of 

identified groups of relatively homogeneous grid cells different 

from their surroundings. Since the two ECa measurements 

frequently correlate, the influence of field elevation in this study 

was made similar to the influence of ECa by raising the 

elevation R2 estimate to the second power: 

 

 22222

ElevationDeepECShallowECProduct RRRR
aa
  (3) 

 

Therefore, the algorithm shown in Figure 1 was implemented to 

maximize product R2 instead of the MSE for a single data layer. 

No formal statistical analysis and comparison with more 

traditional spatial clustering techniques were performed at this 

preliminary stage. 

 

3. RESULTS AND DISCUSSION 

Figure 2 illustrates one of the six fields from the initial trial of 

the developed algorithm. Areas of the field representing low 

elevation in the east and high elevation in the west were 

delineated first with two additional groups emerging later. 

Figure 3 illustrates that R2 values increased as new groups were 

formed. Apparently, delineation of groups 2 and 4 were 

primarily caused by the spatial variability of soil ECa, while 

groups 3 and 5 emerged predominantly due to differences in 

field elevation. The algorithm did not locate any new groups of 

3x3 grid cells that could further increase the R2 product. 

 

Figure 4 illustrates grid cell grouping for all the fields resulting 

in a total of 2-8 groups per field. Figure 5 summarises resulting 

R2 values. The products of these values are shown in Figure 6. 

Fields 2 and 4 revealed only one group of grid cells that could 

be separated from the rest of the field while Fields 3 and 4 had 6 

and 7 groups, respectively. At the same time, the algorithm 

produced groups with relatively strong three data layer 

partitioning for Fields 1, 3, 4, and 6. However, sub-division of 

Fields 2 and 5 was mainly dominated by field elevation, which 

resulted in relatively low R2 products. In both cases, soil ECa 

measurements differed significantly among neighbouring cells, 

indicating relatively poor spatial structure. 

 

Although the strength of this algorithm is spatial continuity of 

each group of grid cells, group edges may need smoothing for 

improved field manageability. Since grid cells poorly associated 

with their neighbours occur mostly due to field anomalies or 

erroneous measurements, edge smoothing will always reduce R2 

product objective function. The next step in this research will 

include a comparison of resulting field partitioning with 

equivalent processing that can be conducted using more 

traditional k-means-type clustering algorithms (Fraise et al., 

2001; Ping and Dobermann, 2003) with suitable pre- and post-

processing techniques.  

 

 

 

 

 
 

 
 

 

 
 

Figure 2. Maps of field elevation (a), shallow ECa (b), 

deep ECa (c), and delineated groups of grid cells (d) for Field 1.  

 

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5

Number of grid cell groups

R
2

Product
Elevation 
Deep ECa
Shallow ECa

 
 

Figure 3. Change in R2 product with number of delineated grid 

cell groupings. 
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Figure 4. Maps of partitioned fields.  
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Figure 5. R2 values for three data layers used to partition the six 

experimental fields. 
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Figure 6. R2 products for the six fields. 

 

4. SUMMARY 

The spatial clustering algorithm developed in this study is based 

on a neighbourhood search method and seeks to minimize 

variance inside each group of interpolated grid pixels 

corresponding to an unlimited number of sensor-based data 

layers. Preliminary tests of the algorithm using six production 

fields illustrated algorithm robustness when delineating field 

areas with different field elevations and soil ECa measurements. 

Each spatially constrained group of grid cells with the exception 

of the first group designated as “the rest of the field” emerged in 

response to every unique combination of data values relatively 

constant within each group.  
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