Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-1/W5, 287-291, 2015
https://doi.org/10.5194/isprsarchives-XL-1-W5-287-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
 
11 Dec 2015
3D OBJECT CLASSIFICATION BASED ON THERMAL AND VISIBLE IMAGERY IN URBAN AREA
H. Hasani and F. Samadzadegan School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
Keywords: Fusion, Thermal Imagery, Visible Imagery, Classification, Urban Area Abstract. The spatial distribution of land cover in the urban area especially 3D objects (buildings and trees) is a fundamental dataset for urban planning, ecological research, disaster management, etc. According to recent advances in sensor technologies, several types of remotely sensed data are available from the same area. Data fusion has been widely investigated for integrating different source of data in classification of urban area. Thermal infrared imagery (TIR) contains information on emitted radiation and has unique radiometric properties. However, due to coarse spatial resolution of thermal data, its application has been restricted in urban areas. On the other hand, visible image (VIS) has high spatial resolution and information in visible spectrum. Consequently, there is a complementary relation between thermal and visible imagery in classification of urban area. This paper evaluates the potential of aerial thermal hyperspectral and visible imagery fusion in classification of urban area. In the pre-processing step, thermal imagery is resampled to the spatial resolution of visible image. Then feature level fusion is applied to construct hybrid feature space include visible bands, thermal hyperspectral bands, spatial and texture features and moreover Principle Component Analysis (PCA) transformation is applied to extract PCs. Due to high dimensionality of feature space, dimension reduction method is performed. Finally, Support Vector Machines (SVMs) classify the reduced hybrid feature space. The obtained results show using thermal imagery along with visible imagery, improved the classification accuracy up to 8% respect to visible image classification.
Conference paper (PDF, 1120 KB)


Citation: Hasani, H. and Samadzadegan, F.: 3D OBJECT CLASSIFICATION BASED ON THERMAL AND VISIBLE IMAGERY IN URBAN AREA, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-1/W5, 287-291, https://doi.org/10.5194/isprsarchives-XL-1-W5-287-2015, 2015.

BibTeX EndNote Reference Manager XML