The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Publications Copernicus
Download
Citation
Articles | Volume XL-1/W5
https://doi.org/10.5194/isprsarchives-XL-1-W5-203-2015
https://doi.org/10.5194/isprsarchives-XL-1-W5-203-2015
11 Dec 2015
 | 11 Dec 2015

A NEW MULTIMODAL MULTI-CRITERIA ROUTE PLANNING MODEL BY INTEGRATING A FUZZY-AHP WEIGHTING METHOD AND A SIMULATED ANNEALING ALGORITHM

F. Ghaderi and P. Pahlavani

Keywords: Route planning, Multi-criteria, Fuzzy-AHP, Simulated annealing

Abstract. A multimodal multi-criteria route planning (MMRP) system provides an optimal multimodal route from an origin point to a destination point considering two or more criteria in a way this route can be a combination of public and private transportation modes. In this paper, the simulate annealing (SA) and the fuzzy analytical hierarchy process (fuzzy AHP) were combined in order to find this route. In this regard, firstly, the effective criteria that are significant for users in their trip were determined. Then the weight of each criterion was calculated using the fuzzy AHP weighting method. The most important characteristic of this weighting method is the use of fuzzy numbers that aids the users to consider their uncertainty in pairwise comparison of criteria. After determining the criteria weights, the proposed SA algorithm were used for determining an optimal route from an origin to a destination. One of the most important problems in a meta-heuristic algorithm is trapping in local minima. In this study, five transportation modes, including subway, bus rapid transit (BRT), taxi, walking, and bus were considered for moving between nodes. Also, the fare, the time, the user’s bother, and the length of the path were considered as effective criteria for solving the problem. The proposed model was implemented in an area in centre of Tehran in a GUI MATLAB programming language. The results showed a high efficiency and speed of the proposed algorithm that support our analyses.