The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Publications Copernicus
Download
Citation
Articles | Volume XL-1/W5
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-1/W5, 11–14, 2015
https://doi.org/10.5194/isprsarchives-XL-1-W5-11-2015
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-1/W5, 11–14, 2015
https://doi.org/10.5194/isprsarchives-XL-1-W5-11-2015

  10 Dec 2015

10 Dec 2015

ACCURACY IMPROVEMENT BY THE LEAST SQUARES IMAGE MATCHING EVALUATED ON THE CARTOSAT-1

H. Afsharnia, A. Azizi, and H. Arefi H. Afsharnia et al.
  • School of Surveying and Geospatial Engineering, University of Tehran, Tehran, Iran

Keywords: DEM Accuracy Improvement, LSM, Parallel Projection Geometry

Abstract. Generating accurate elevation data from satellite images is a prerequisite step for applications that involve disaster forecasting and management using GIS platforms. In this respect, the high resolution satellite optical sensors may be regarded as one of the prime and valuable sources for generating accurate and updated elevation information. However, one of the main drawbacks of conventional approaches for automatic elevation generation from these satellite optical data using image matching techniques is the lack of flexibility in the image matching functional models to take dynamically into account the geometric and radiometric dissimilarities between the homologue stereo image points. The classical least squares image matching (LSM) method, on the other hand, is quite flexible in incorporating the geometric and radiometric variations of image pairs into its functional model. The main objective of this paper is to evaluate and compare the potential of the LSM technique for generating disparity maps from high resolution satellite images to achieve sub pixel precision. To evaluate the rate of success of the LSM, the size of the y-disparities between the homologous points is taken as the precision criteria. The evaluation is performed on the Cartosat-1 stereo along track images over a highly mountainous terrain. The precision improvement is judged based on the standard deviation and the scatter pattern of the y-disparity data. The analysis of the results indicate that, the LSM has achieved the matching precision of about 0.18 pixels which is clearly superior to the manual pointing that yielded the precision of 0.37 pixels.