Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-1/W3, 169-173, 2013
https://doi.org/10.5194/isprsarchives-XL-1-W3-169-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
 
24 Sep 2013
KERNEL-BASED UNSUPERVISED CHANGE DETECTION OF AGRICULTURAL LANDS USING MULTI-TEMPORAL POLARIMETRIC SAR DATA
M. A. Fazel1, S. Homayouni2, and J. Amini1 1Dept. of Geomatics Engineering, College of Engineering, University of Tehran, Iran
2Dept. of Geography, University of Ottawa, Canada
Keywords: Change Detection, Synthetic Aperture Radar, Polarimetric SAR, Agricultural lands monitoring, Kernel-based c-means, multi-temporal data analysis Abstract. Unsupervised change detection of agricultural lands in seasonal and annual periods is necessary for farming activities and yield estimation. Polarimetric Synthetic Aperture Radar (PolSAR) data due to their special characteristics are a powerful source to study temporal behaviour of land cover types. PolSAR data allows building up the powerful observations sensitive to the shape, orientation and dielectric properties of scatterers and allows the development of physical models for identification and separation of scattering mechanisms occurring inside the same region of observed lands. In this paper an unsupervised kernel-based method is introduced for agricultural change detection by PolSAR data. This method works by transforming data into higher dimensional space by kernel functions and clustering them in this space. Kernel based c-means clustering algorithm is employed to separate the changes classes from the no-changes. This method is a non-linear algorithm which considers the contextual information of observations. Using the kernel functions helps to make the non-linear features more separable in a linear space. In addition, use of eigenvectors' parameters as a polarimetric target decomposition technique helps us to consider and benefit physical properties of targets in the PolSAR change detection. Using kernel based c-means clustering with proper initialization of the algorithm makes this approach lead to great results in change detection paradigm.
Conference paper (PDF, 664 KB)


Citation: Fazel, M. A., Homayouni, S., and Amini, J.: KERNEL-BASED UNSUPERVISED CHANGE DETECTION OF AGRICULTURAL LANDS USING MULTI-TEMPORAL POLARIMETRIC SAR DATA, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-1/W3, 169-173, https://doi.org/10.5194/isprsarchives-XL-1-W3-169-2013, 2013.

BibTeX EndNote Reference Manager XML