The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Publications Copernicus
Download
Citation
Articles | Volume XL-1/W1
https://doi.org/10.5194/isprsarchives-XL-1-W1-363-2013
https://doi.org/10.5194/isprsarchives-XL-1-W1-363-2013
02 May 2013
 | 02 May 2013

EVALUATION OF SAR DATA AS SOURCE OF GROUND CONTROL INFORMATION: FIRST RESULTS

D. I. Vassilaki, C Ioannidis, and A. A. Stamos

Keywords: Georeferencing, matching, DEM/DTM, SAR, optical, multisensor, accuracy, performance, experiment

Abstract. The high resolution imaging modes of modern SAR sensors has made SAR data compatible with optical images. SAR data offers various capabilities which can enhance the geometric correction process of optical images (accurate, direct and ground-independent georeferencing capabilities and global DEM products). In this paper the first results of an on-going study on the evaluation of SAR data as source of ground control information for the georeferencing of optical images are presented. The georeferencing of optical images using SAR data is in fact a co-registration problem which involves multimodal, mutitemporal, and multiresolution data. And although 2D transformations have proved to be insufficient for the georeferencing process, as they can not account for the distortions due to terrain, quite a few approaches on the registration of optical to SAR data using 2D-2D transformations can still be found in the literature. In this paper the performance of 2D-2D transformations is compared to the 3D-2D projective transformation over a greater area of Earth’s surface with arbitrary terrain type. Two alternative forms of ground control information are used: points and FFLFs. The accuracy of the computed results is obtained using independent CPs and it is compared to the geolocation accuracy specification of the optical image, as well as to the accuracy of exhaustive georeferencing done by third parties.