The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Publications Copernicus
Download
Citation
Articles | Volume XXXIX-B7
https://doi.org/10.5194/isprsarchives-XXXIX-B7-399-2012
https://doi.org/10.5194/isprsarchives-XXXIX-B7-399-2012
01 Aug 2012
 | 01 Aug 2012

FAST OCCLUSION AND SHADOW DETECTION FOR HIGH RESOLUTION REMOTE SENSING IMAGE COMBINED WITH LIDAR POINT CLOUD

X. Hu and X. Li

Keywords: Fast, Occlusion, Shadow, High Resolution, Remote Sensing, LiDAR

Abstract. The orthophoto is an important component of GIS database and has been applied in many fields. But occlusion and shadow causes the loss of feature information which has a great effect on the quality of images. One of the critical steps in true orthophoto generation is the detection of occlusion and shadow. Nowadays LiDAR can obtain the digital surface model (DSM) directly. Combined with this technology, image occlusion and shadow can be detected automatically. In this paper, the Z-Buffer is applied for occlusion detection. The shadow detection can be regarded as a same problem with occlusion detection considering the angle between the sun and the camera. However, the Z-Buffer algorithm is computationally expensive. And the volume of scanned data and remote sensing images is very large. Efficient algorithm is another challenge. Modern graphics processing unit (GPU) is much more powerful than central processing unit (CPU). We introduce this technology to speed up the Z-Buffer algorithm and get 7 times increase in speed compared with CPU. The results of experiments demonstrate that Z-Buffer algorithm plays well in occlusion and shadow detection combined with high density of point cloud and GPU can speed up the computation significantly.