
ORTHORECTIFICATION BY USING GPGPU METHOD

H. Sahin a, *, S. Kulur b

a General Command of Mapping, 06100 Dikimevi, Ankara, Turkey – hakan.sahin@hgk.msb.gov.tr

b ITU, Civil Engineering Faculty, 80626 Maslak, Istanbul, Turkey - kulur@itu.edu.tr

Commission IV, WG IV/3

KEYWORDS: Processing, Programming, Orthorectification, Technology, Orthoimage.

ABSTRACT:

Thanks to the nature of the graphics processing, the newly released products offer highly parallel processing units with high-memory
bandwidth and computational power of more than teraflops per second. The modern GPUs are not only powerful graphic engines but
also they are high level parallel programmable processors with very fast computing capabilities and high-memory bandwidth speed
compared to central processing units (CPU). Data-parallel computations can be shortly described as mapping data elements to
parallel processing threads. The rapid development of GPUs programmability and capabilities attracted the attentions of researchers
dealing with complex problems which need high level calculations. This interest has revealed the concepts of “General Purpose
Computation on Graphics Processing Units (GPGPU)” and “stream processing”. The graphic processors are powerful hardware
which is really cheap and affordable. So the graphic processors became an alternative to computer processors. The graphic chips
which were standard application hardware have been transformed into modern, powerful and programmable processors to meet the
overall needs. Especially in recent years, the phenomenon of the usage of graphics processing units in general purpose computation
has led the researchers and developers to this point. The biggest problem is that the graphics processing units use different
programming models unlike current programming methods. Therefore, an efficient GPU programming requires re-coding of the
current program algorithm by considering the limitations and the structure of the graphics hardware. Currently, multi-core
processors can not be programmed by using traditional programming methods. Event procedure programming method can not be
used for programming the multi-core processors.

GPUs are especially effective in finding solution for repetition of the computing steps for many data elements when high accuracy is
needed. Thus, it provides the computing process more quickly and accurately. Compared to the GPUs, CPUs which perform just one
computing in a time according to the flow control are slower in performance. This structure can be evaluated for various applications
of computer technology.

In this study covers how general purpose parallel programming and computational power of the GPUs can be used in
photogrammetric applications especially direct georeferencing. The direct georeferencing algorithm is coded by using GPGPU
method and CUDA (Compute Unified Device Architecture) programming language. Results provided by this method were
compared with the traditional CPU programming. In the other application the projective rectification is coded by using GPGPU
method and CUDA programming language. Sample images of various sizes, as compared to the results of the program were
evaluated. GPGPU method can be used especially in repetition of same computations on highly dense data, thus finding the solution
quickly.

* Corresponding author. This is useful to know for communication with the appropriate person in cases with more than one author.

1. INTRODUCTION

The graphic processing units (GPU) on the graphic cards
integral parts of computers are really developed today
according to the last ten years. The development was the
increase of the GPUs performance and capabilities. The modern
GPUs are not only became powerful graphic engines and also
they are high level parallel programmable processors with very
fast computing capabilities and high memory bandwidth speed
comparing to central processing units (CPU). The rapid
development of GPUs programmability and capabilities
attracted the researchers dealing with complex problems who
need highly level calculation. This interest has revealed the
concepts of “General Purpose Computation on Graphics
Processing Units (GPGPU)” and “stream processing”.

Real time processing of imagery airborne data will be very
important in the near future (Thomas et al. 2008). For rapid
evaluating data coming from unmanned air vehicles (UAV) in
military applications, for supporting rescue and security forces,
and also for obtaining surveys in disaster scenarios or mass
events an airborne real time image processing system is
required. So the need is speed for processing the imagery data.

Thanks to the state of the art GPUs, there is now commodity
hardware, providing peak performances more than teraflops per
second, and such tremendous computational resource certainly
helps the goal of orthorectification in real time.

The announcements of immense computational speedups and
fascinating developments in GPU hardware inspired to use
general purpose parallel processing in image processing. In
literature, there exists limited work about the orthorectification

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B4, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

165

with GPGPU and photogrammetric using GPU parallel
processing.

General purpose parallel programming can use GPUs not only
for graphics but also for removing the burden of the non-
graphic computational workload which is traditionally handled
by a CPU. Significant computational speedups have been
achieved by various researchers from different disciplines using
general purpose parallel programming. Although GPU-based
non-graphics computation is well suited to data-parallel tasks
such as image processing kernels and matrix operations, it is
also possible to accelerate many other applications by adapting
existing algorithms to the general purpose parallel programming
(Yılmaz, 2010). Therefore it seems reasonable to exploit
tremendous computing power of GPUs for orthorectification,
since computational power is an important concern,

In this study we currently used the GPGPU method for
orthorectification procedure.

2. GPGPU AND STREAM PROCESSING

The main reason for coming to the agenda the GPUs is really
powerful and as well as cheap hardware available. These chips
were standard application equipment in near future but they
evolved into powerful and programmable processors to meet
general needs today. Especially in recent years, GPUs can be
used in general purpose calculations phenomenon attracted the
attentions of researchers dealing with complex problems which
need high level calculations. The biggest problem here is; GPUs
uses different programming algorithm. Because of that reason,
the effective GPU programming requires the re-writing existing
program algorithm using graphical terms again considering to
hardware structure and limitations. Today, the multicore
processors can not be programming using traditional
programming methods. So the usage of typical event
programming procedure can not be possible for programming
the multicore processors.

Programming model changed to stream computing and
processing. In this new model for identifying the kernel
functions, that apply intensive calculation each element in the
flow, all the input and output data qualified as stream. There are
lots of processors on the GPU that process these streams.

For example Nvidia GTX580 series card has 512 unit stream
processors (CUDA processors). So we can consider such as 512
computers stay side by side. The graphic cards can do multiple
intensive processes with these stream processors at the same
time.

GPUs can make more parallel calculation than CPUs. This can
be shown in Figure 1. “Flop” term defines the processor speed.
It means “the number of floating points per second”. We can
see clearly from the chart, Nvidia graphic processors about ten
times faster than Intel processors in year 2010.

Memory bandwidth term means, amount of the data transferring
in per second between GPU and graphic card memory.
Theoretical maximum memory bandwidth is typically
computed by multiplying the width of the interface by the
frequency at which it transfers data. This term speedup is a
factor that improves the graphic card performance. Given the
floating-point operation per second to increase capacity in line
with the years, has been an improvement in memory bandwidth.

Figure 2 show that, GPUs bandwidth reached a rate 6 times
more than CPUs bandwidth.

Figure 1. Development of floating-point operations per second

for the CPU and GPU (Nvidia, 2011).

Figure 2. Development of memory bandwidth for the CPU and

GPU (Nvidia, 2011a).

The reason behind the discrepancy in floating-point capability
between the CPU and the GPU is that the GPU is specialized
for compute-intensive, highly parallel computation – exactly
what graphics rendering is about – and therefore designed such
that more transistors are devoted to data processing rather than
data caching and flow control, as schematically illustrated by
Figure 3.

Figure 3. The general structure of CPU and GPU and difference

in the number of transistors they have (Nvidia, 2011b).

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B4, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

166

More specifically, the GPU is especially well-suited to address
problems that can be expressed as data-parallel computations –
the same program is executed on many data elements in parallel
(with high arithmetic intensity) – the ratio of arithmetic
operations to memory operations. Because the same program is
executed for each data element, there is a lower requirement for
sophisticated flow control; and because it is executed on many
data elements and has high arithmetic intensity, the memory
access latency can be hidden with calculations instead of big
data caches.

Data-parallel processing maps data elements to parallel
processing threads. Many applications that process large data
sets can use a data-parallel programming model to speed up the
computations. In 3D rendering, large sets of pixels and vertices
are mapped to parallel threads. Similarly, image and media
processing applications such as post-processing of rendered
images, video encoding and decoding, image scaling, stereo
vision, and pattern recognition can map image blocks and pixels
to parallel processing threads. In fact, many algorithms outside
the field of image rendering and processing are accelerated by
data-parallel processing, from general signal processing or
physics simulation to computational finance or computational
biology.

3. CUDA (COMPUTE UNIFIED DEVICE
ARCHITECTURE

Long time ago, the developers have tried to use GPUs for
parallel computing. The initial use of these initiatives (such as
rasterizing and Z-buffering) is very primitive and limited to
fully utilize the hardware functions. But the shading
calculations have accelerated the matrix calculations.

There was a session called “GPGPU” for “GPU computing” in
SIGGRAPH conference in 2003. But this session has been
almost no participation. In this session the best known topic was
“BrookGPU” as an stream programming language. Before the
publication of this programming language there were two
software development applications known Direct3D and
OpenGL. However, limited number of GPU applications can be
developed with these languages. After that, “Brook project”
made it possible to using GPUs as a parallel processor and can
be programming with C language. This project was developed
by Stanford University and has attracted attention of graphic
cards companies “NVIDIA” and “ATI” who are the two
different designer and manufacturer. Later, some people who
developed “Brook”, was joined to NVIDIA Company and
started offering a new marketing strategy as a unit of parallel
computation. Thus, direct use of graphics hardware has
emerged, and on behalf of a structure called the NVIDIA
CUDA.

Although announcements were made earlier, Nvidia introduced
CUDA to the public in February, 2007. This technology was
designed to meet several important requirements for a wide
audience’s use. One of the most important requirement is the
ability to program GPUs easily. Simplicity is necessary to ease
GPU parallel programming and enable its use in more
disciplines. Before CUDA, GPU parallel programming was
limited to shader models of the graphics APIs. Thus, only the
problems well-suited to the nature of vertex and fragment
shaders were computed by using GPU parallel processing.
Additionally, expressing general algorithms in terms of textures
and GPU provided 3D operations by using only float numbers

were among the issues that limited the popularity of the GPU
computing. To achieve the goal of making GPU parallel
programming easy and practical, Nvidia offered to use C
programming language with minimal extensions. Another
important issue is the heterogeneous computing model, which
takes it possible to use CPU and GPU resources together.
CUDA lets programmers divide the code and data into sub-
parts, considering their suitability to the CPU/GPU architecture
and respective programming techniques. Such a division is
possible because the host and device have their own memories.
In this sense, it also becomes possible to port existing
implementations gradually, from the CPU to the GPU (Yilmaz,
2010). Briefly, CUDA technology is a software-hardware
computing architecture developed by NVIDIA and based on the
C programming language for parallel calculation to controls
GPU commands and video memory.

CUDA works with all Nvidia GPUs from the G8x series
onwards and new series including GeForce, Quadro and the
Tesla line. The data-parallel and thread-parallel architecture
introduces scalability. Since no extra effort is necessary to run
existing solution, the new GPUs are capable of running more
processing threads. It means that the code designed for the
Nvidia 8 series runs faster in Nvidia GTX series without any
additional coding. Nvidia states that programs developed for the
G8x series will also work without modification on all future
Nvidia video cards, due to binary compatibility.

The three abstractions offered by Nvidia ensure the granularity
required for good data parallelism and thread parallelism. These
below listed abstractions are designed to make CUDA
programmers life easy.

• Thread Group hierarchy: Threads are packed into
blocks which are also packed into a single grid.

• Shared memories: CUDA let threads use six different
memories that are designed to meet different
requirements.

• Barrier synchronization: This abstraction
synchronizes threads within a single block and makes
a thread wait the others to finish related computing,
before going further.

C for CUDA makes it possible to write functions that run on the
GPU by using C language. These functions are called “kernels”,
which are executed for each thread in a parallel manner unlike
the conventional serial programming functions that run only
once.

CUDA’s architecture offers thread hierarchy in top-down order
as follow:

1. Grid: A grid contains one or two dimensional blocks.
2. Blocks: A block contains one, two or three

dimensional threads. Current GPUs allow a block to
contain 512 threads at most. The blocks are executed
independently, and they are directed to available
processors to provide scalability.

3. Thread: A thread is the basic execution element.

This hierarchy and the structure are depicted by Figure 4. For
example if it is assumed that 1048576 pixels to be processed
independently in parallel manner and the block size is
determined as 512, the there are 2048 grids.

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B4, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

167

Figure 4. CUDA thread hierarchy.

CUDA processing flow shown in Figure 5 as follow:

1. Copy data from main mem to GPU mem
2. CPU instructs the process to GPU
3. GPU execute parallel in each core
4. Copy the result from GPU mem to main mem

Figure 5. Processing flow on CUDA (URL 1).

Some of the applications made by parallel processing with
CUDA shows that GPUs processing time is 5-150 times faster
than CPUs. Some Nvidia research results given in Figure 6.

Figure 6. The results of some applications made by Nvidia.

4. PROJECTIVE RECTIFICATION WITH CUDA

To perform a projective rectification, a geometric
transformation between the image plane and the projective
plane is necessary. For the calculation of the eight unknown
coefficients of the projective transformation, at least four
control points in the object plane are required. Projective
transformation is applicable to rectifying imagery of flat terrain
or images of facades of buildings, since it does not correct the
relief displacement. The equations for projective rectification
are given as follows: E.g.

1

1

33

222

33

111

++
++

=

++
++

=

ybxa
cybxa

Y

ybxa
cybxa

X (1)

where X, Y = rectified coordinates
 x, y = tilted image coordinates
 a1, b1, c1, a2, b2, c2, a3, b3 = transformation parameters

Projective rectification algorithm used as an example. In this
example we used 4096x4096 pixel size image which taken on a
plane area. Four image and object coordinates known points
chosen from the image. With these points we solved the
equation and calculated the coefficients of the equation. With
these coefficients, object-space coordinates of each pixel on the
image is calculated. All these calculation procedures
parallelized and coded with using CUDA programming
language. The same code runs on CPU and also GPU. So we
can compare the results with processing time. When the
program runs, the computer screen snapshot shown in Figure 7.

Figure 7. Projective rectification screen snapshot.

In this study, projective rectification procedure applied to each
pixel of the sample image. In this situation, the problem could
be separated to threads with CUDA and the graphical
processors processed the data at the same time. So we could
take the calculation result quickly.

If we analyze the program output from Figure 7, calculation
GPU time 175,593 millisecond, for the same procedure CPU
time is 790,991 millisecond. The discrepancy with GPU and
CPU time shows that GPU 4.5 times faster than CPU. In this
example we used 4096x4096 pixel size image and Nvidia
Geforce 8600M GT graphic card with Core 2 Duo 2.2GHz
CPU. If the image size getting smaller, CPU performance
increase. So with the very huge and repetitive calculation
problems using GPU is more efficient and produces results
rapidly.

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B4, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

168

Image Size
(pixel)

GPU Time
(millisecond
)

CPU Time
(millisecond
)

CPU / GPU
(rate)

1024 x 1024 14,09 48,917 3,47
2048 x 2048 75,994 190,626 2,51
4096 x 4096 175,593 790,991 4,50

Table 1. Calculation results with using GPU and CPU.

5. DIRECT GEOREFERENCING WITH CUDA

Direct Georeferencing is the direct determination of the position
and orientation parameters of a sensor. It is an enabling
technology for quantitative data acquisition and mapping
applications where precise orientation and the position of the
sensor are required. A direct georeferencing system provides
the position and orientation of the sensor required to register the
acquired data in geographic coordinates. In photogrammetry,
direct georeferencing is used to produce measurement of the
exterior orientation parameters for each image without use of
ground control points or aerial triangulation.

Direct georeferencing is based on colinearity equations to
provide a relationship between pixel positions and
corresponding positions on ground. The procedure of
differential rectification is applied in combination with the
forward projection (direct) method of orthoimage reprojection.
This is based on the colinearity principle, which states that the
projection center of a central perspective image, an object point,
and its photographic image lies upon a straight line.

Direct Georeferencing for aerial digital frame cameras consists
of six stages and the data needed for each step are shown in
Figure 8 (Kiracı, 2008).

Figure 8. Direct Georeferencing algorithm.

It is shown in figure that the procedure is really suitable for
GPGPU and CUDA programming. Because of that the
procedures must be done for each pixel of image. In every loop
we must do pixel by pixel transformation. So all these
calculation procedures parallelized and coded with using
CUDA programming language.

The program running results are; calculation GPU time
1328234 millisecond, for the same procedure CPU time is
6827282 millisecond. The discrepancy with GPU and CPU
time shows that GPU 5.14 times faster than CPU (Table 2). In
this example we used 4096x4096 pixel size image and Nvidia
Geforce 8600M GT graphic card with Core 2 Duo 2.2GHz
CPU. If the image size getting smaller, CPU performance
increase. So with the very huge and repetitive calculation
problems using GPU is more efficient and produces results
rapidly.

Image Size
(pixel)

GPU Time
(millisecond
)

CPU Time
(millisecond
)

CPU / GPU
(rate)

1024 x 1024 84675 324563 3,83
2048 x 2048 342634 934547 2,73
4096 x 4096 1328234 6827282 5,14

Table 2. Calculation results with using GPU and CPU.

6. RESULTS

In this study covers how general purpose parallel programming
and computational power of the GPUs and GPGPU method can
be used in photogrammetric orthorectification applications
especially direct georeferencing and projective rectification.
These two methods coded with CUDA programming language.
The results obtained are evaluated; the method is really suitable
for image processing and photogrammetry especially if we do
the same calculations to per image pixels. Also it is suitable for
intensive calculation procedures. GPGPU and CUDA
programming method make the calculation really fast. We can
increase the number of applications which can be adapted to
photogrammetry and image processing that require intensive
computation and speed.

In our study we didn’t make any optimization of the CUDA
programming code. So in future studies we will focus on
optimization of the coding procedures. Also our development
software doesn’t have a user interface yet. We will make a user
interface for this software.

Today, with this method the images obtained through a variety
of platforms, to be georeferenced correctly and quickly.
Especially if it is important that real time processing of imagery
airborne data for natural disasters, for rapid evaluating data
coming from unmanned air vehicles (UAV) in military
applications, for supporting rescue and security forces, and also
for obtaining surveys in disaster scenarios or mass events an
airborne real time image processing system is required. For this
purpose we can use this GPGPU method for rectifying process
of imagery data. PPT: Pixel by Pixel

Transformation

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B4, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

169

7. REFERENCES

Bettemir O.H., 2006. “Sensitivity and Error Analysis of a
Differential Rectification Method for CCD Frame Cameras and
Pushbroom Scanners”, Master Thesis, METU, Ankara.

Biesemans, J and Everaerts, J., 2006. “Image Processing
Workflow for the Pegasus HALE UAV Payload.” International
Archives of Photogrammetry, Remote Sensing and Spatial
Information Sciences, Antwerp, Belgium, Vol. XXXVI-1/W44.

Gruen, A. and Beyer, H., 2001. ”Calibration and Orientation of
Cameras in Computer Vision”, Springer Series in Information
Sciences. Vol. 34, Springer-Verlag Berlin Heidelberg.

Jacobsen, K., 2002. “Calibration aspects in direct
georeferencing of frame imagery” In: Int. Archives PhRS (34),
1 I, pp. 82-89, Denver.

Karslioglu, M.O., Friedrich J., 2005. “A New Differential
Geometric Method to Rectify Digital Images of the Earth’s
Surface Using Isothermal Coordinates”, IEEE Transactions on
Geoscience and Remote Sensing, Vol. 43, No. 3, March.

Kiracı, A.C., 2008. “Direct Georeferencing and
Orthorectification of Airborne Digital Images”, Master Thesis,
METU, Ankara.

Kraus, K., 2007. Fotogrametri Cilt 1 Fotoğraflardan ve Lazer
Tarama Verilerinden Geometrik Bilgiler. Istanbul Technical
University, Nobel Yayın Dağıtım, 1.Basım.

Mercedes Marqu´es, Gregorio Quintana-Ort´ı, Enrique S.
Quintana-Ort´ı, Robert van de Geijn. 2009. Using graphics
processors to accelerate the solution of out-of-core linear
systems 8th IEEE International Symposium on Parallel and
Distributed Computing, Lisbon.

Novak, K. 1992. Rectification of Digital Imagery,
Photogrammetric Engineering and Remote Sensing, 339-344.

Nvidia, 2009. CUDA Architecture, Introduction and Overview,
Nvidia Corp., California, USA.

Nvidia, 2011a. OpenCL Programming Guide for the CUDA
Architecture, Nvidia Corp., California, USA.

Nvidia, 2011b. CUDA C Programming Guide, Nvidia Corp.
California, USA.

U. Thomas, F. Kurz, D. Rosenbaum, R. Mueller, P. Reinartz,
2008. “GPU-based Orthorectification of Digital Airborne
Camera Images in Real Time”, The International Archives Of
The Photogrammetry, Remote Sensing And Spatial Informatıon
Sciences, ISPRS Congress Beijing, Volume XXXVII Part B1
Commission I.

White, S. and M Aslaksen, 2006. “Use of Direct
Georeferencing to Support Emergency Response”. NOAA’s
PERS Direct Georeferencing Column.

Yılmaz, E., 2010. Massive Crowd Simulation with Parallel
Processing, PhD Thesis, Information Systems Department,
METU, Ankara.

URL 1, http://en.wikipedia.org/wiki/CUDA, 14 April 2012.

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B4, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

170

