Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W3, 587-593, 2017
http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W3/587/2017/
doi:10.5194/isprs-archives-XLII-2-W3-587-2017
 
23 Feb 2017
FOLK DANCE PATTERN RECOGNITION OVER DEPTH IMAGES ACQUIRED VIA KINECT SENSOR
E. Protopapadakis1, A. Grammatikopoulou2, A. Doulamis1, and N. Grammalidis2 1School of Rural and Surveying Engineering, National Technical University of Athens, 9 Iroon Polytechneiou str, 15780 Zografou, Greece
2Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece
Keywords: Intangible Cultural Heritage, Folk Dances, Depth Camera, Unsupervised Clustering, Skeleton data Abstract. The possibility of accurate recognition of folk dance patterns is investigated in this paper. System inputs are raw skeleton data, provided by a low cost sensor. In particular, data were obtained by monitoring three professional dancers, using a Kinect II sensor. A set of six traditional Greek dances (without their variations) consists the investigated data. A two-step process was adopted. At first, the most descriptive skeleton data were selected using a combination of density based and sparse modelling algorithms. Then, the representative data served as training set for a variety of classifiers.
Conference paper (PDF, 1011 KB)


Citation: Protopapadakis, E., Grammatikopoulou, A., Doulamis, A., and Grammalidis, N.: FOLK DANCE PATTERN RECOGNITION OVER DEPTH IMAGES ACQUIRED VIA KINECT SENSOR, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W3, 587-593, doi:10.5194/isprs-archives-XLII-2-W3-587-2017, 2017.

BibTeX EndNote Reference Manager XML