Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W3, 259-266, 2017
http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W3/259/2017/
doi:10.5194/isprs-archives-XLII-2-W3-259-2017
 
23 Feb 2017
MULTI-SOURCE 3D MODELS SUPPORTING ULTRASONIC TEST TO INVESTIGATE AN EGYPTIAN SCULPTURE OF THE ARCHAEOLOGICAL MUSEUM IN BOLOGNA
V. Di Pietra1, E. Donadio2, D. Picchi3, L. Sambuelli4, and A. Spanò2 1Dept. of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
2Geomatics for Cultural Heritage Laboratory - Politecnico di Torino, Viale Mattioli 39, 10125 Torino, Italy
3Civic Archaeological Museum, Via dell’Archiginnasio 2, 40124 Bologna, Italy
4Engel (Environmental-Engineering Geophysics Laboratory) - Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
Keywords: 3D modelling, point clouds, Structure from Motion (SfM), hand-held 3D scanner, 3D Ultrasonic Tomographic Imaging, data representation, Cultural Heritage, Egyptian statue Abstract. The paper presents the workflow and the results of an ultrasonic 3D investigation and a 3D survey application aimed at the assessment of the internal integrity of an ancient sculpture. The work aimed at highlighting the ability of methods devoted to the 3D geometry acquisition of small objects when applied to diagnosis performed by geophysical investigation. In particular, two methods widely applied for small objects modelling are considered and compared, the digital Photogrammetry with the Structure from Motion (SFM) technique and hand-held 3D scanners. The study concludes with the aim to enhance the final graphical representation of the tomographic results and to subject the obtained results to a quantitative analysis.

The survey is applied to the Egyptian naophorous statue of Amenmes and Reshpu, which dates to the reign of Ramses II (1279-1213 BC) or later and is now preserved in the Civic Archaeological Museum in Bologna. In order to evaluate the internal persistency of fractures and visible damages, a 3D Ultrasonic Tomographic Imaging (UTI) test has been performed and a multi-sensor survey (image and range based) was conducted, in order to evaluate the locations of the source and receiver points as accurate as possible The presented test allowed to evaluate the material characteristics, its porosity and degradation state, which particularly affect the lower part of the statue. More in general, the project demonstrated how solution coming from the field of 3D modelling of Cultural Heritage allow the application of 3D ultrasonic tomography also on objects with complex shapes, in addition to the improved representation of the obtained results.

Conference paper (PDF, 1773 KB)


Citation: Di Pietra, V., Donadio, E., Picchi, D., Sambuelli, L., and Spanò, A.: MULTI-SOURCE 3D MODELS SUPPORTING ULTRASONIC TEST TO INVESTIGATE AN EGYPTIAN SCULPTURE OF THE ARCHAEOLOGICAL MUSEUM IN BOLOGNA, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W3, 259-266, doi:10.5194/isprs-archives-XLII-2-W3-259-2017, 2017.

BibTeX EndNote Reference Manager XML