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ABSTRACT: 

The current methods of object segmentation and extraction and classification of aerial LiDAR data is manual and tedious task. This 

work proposes a technique for object segmentation out of LiDAR data. A bottom-up geometric rule based approach was used 

initially to devise a way to segment buildings out of the LiDAR datasets. For curved wall surfaces, comparison of localized surface 

normals was done to segment buildings. The algorithm has been applied to both synthetic datasets as well as real world dataset of 

Vaihingen, Germany. Preliminary results show successful segmentation of the buildings objects from a given scene in case of 

synthetic datasets and promissory results in case of real world data. 

The advantages of the proposed work is non-dependence on any other form of data required except LiDAR. It is an unsupervised 

method of building segmentation, thus requires no model training as seen in supervised techniques. It focuses on extracting the walls 

of the buildings to construct the footprint, rather than focussing on roof. The focus on extracting the wall to reconstruct the buildings 

from a LiDAR scene is crux of the method proposed. The current segmentation approach can be used to get 2D footprints of the 

buildings, with further scope to generate 3D models. Thus, the proposed method can be used as a tool to get footprints of buildings 

in urban landscapes, helping in urban planning and the smart cities endeavour.  

1. INTRODUCTION

1.1 Literature Survey 

Building segmentation tasks in the industry is still more 

focussed on manual and semi-automatic techniques. The 

automatic techniques have been explored, but they have some 

shortcomings. They involve the use of composite data along 

with LiDAR data. Getting multiple sets of data for the same area 

decreases the chance of data generation. Existing public dataset 

aren’t very high density data and lack the spatial resolution to 
retrieve or reconstruct the building model from the LiDAR data. 

Existing work done in building segmentation from LiDAR 

involve multiple approaches based on the point density, 

additional supplementary data like co-located images, 

identification of roof and its extension to building footprints. In 

algorithms based on the generation of the roof plane (Tarsha-

Kurdi, 2007;  Elaksher, 2002), the identification of the best roof 

plane, though not the best fitting one, needs a rather high point 

cloud density controlled by the choice or voting in the 

parameter space of the transform function. 

Tarsha-Kurdi (2007) used a RANSAC based 3D Hough 

transform to segment buildings. Advantages of RANSAC gives 

us faster and cleaner results. The shortcoming of it is that it 

finds the best roof plane rather than the best fitting plane and it's 

dependency on high density point cloud data. (Elaksher, 2002) 

also segmented buildings using a transform similar to Hough 

transform, where voting is done in an plane parameter space and 

the finding a space with larger number of points. It removes 

ground points using a minimum ground filter. It identifies the 

different roof planes and the same building and then fills the 

holes in them. After the roof planes are constructed wireframes 

are made to construct "roof border points". 

Zhang (2006) proposed contour based analysis of LiDAR data 

to segment buildings. Due to the difficulty of finding the 

optimal voting size in the Hough transform and the challenges 

in regularising the raw footprint obtained. It proposed a 

morphological operation for ground points removal. 

Subsequently, region growing plane fitting algorithm was used 

to get the building footprints and it was de-noised by Douglas-

Peucker algorithm. LiDAR point density is crucial for the 

optimal results.  (Yan, 2015) used global minima of the energy 

functions derived from the 2D building topology to segment 

buildings. It proposed using the snake algorithm (dynamic 

programming based graph topology extraction algorithm) which 

finds the global optima in polynomial time. The raw topology 

constructed is simplified using the Douglas-Peucker algorithm. 

The  3D models are generated and subsequent refining of the 

footprints from the 3D models is done. 

Awrangjeb (2010) used both LiDAR and colour orthoimagery 

to accurately segment buildings from the scene. It defined two 

building masks - primary building mask and secondary building 

mask for the task. Here the author assumes that the buildings 

are only rectangle shaped or rectangle of rectangles. Canny edge 

detector is used to segment the lines out of the scene using a 

least square straight line fitting technique. Some of the 

shortcomings of the work include requirement of high density 

data, inaccurate results for high rise buildings, unable to process 

areas with high terrain slope. (Siddiqui, 2016) tackled the 

problem of extracting small buildings and buildings with 

transparent roofs using a gradient image out of the non-ground 

points. It used texture analysis i.e. entropy and variance to 
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remove trees and other objects. Lines extracted are then 

classified based on 8 histogram bins. 

 

Awrangjeb, (2014) divided the non-ground point in clusters 

based on height and local neighbourhood following a region 

growing technique. It then uses a rule based technique to 

remove the tree edges etc. (Siddiqui, 2014) co-planarity of the 

non-ground LIDAR points is measured using the Delaunay 

triangle neighbourhood algorithm. The lines obtained from 

above use their mid points of the segments as seed points for 

region growing method to segment buildings. Further, 

refinement to remove tree planes using point ratio, object shape 

information, height gap. Using height based thresholding 

different planes are separated. 

 

Current methods are more top-down nature with major focus on 

footprint creation from the roof without using other available 

features present in the LiDAR data. The works focussing on 

roof based building reconstruction rely on the top-view of the 

building only, which may not match or be identical, ex: when 

the roof of the given  building extends beyond the edge of the 

building. Thus, current methods relying on the roof planes will 

extract a footprint that is larger than the accurate value. The 

good performance of current methods run successfully on low-

rise buildings and perform poorly in high-rise buildings. The 

high-rise buildings can be handled in a better fashion in our 

proposed algorithm. 

 

1.2 Objective 

Most of the current methods are extensively dependent on 

additional information requirement or the empirical domain 

knowledge about the LiDAR data beforehand. This leads to 

scaling up issues with the current approaches. Thus, to 

overcome such challenges we propose the need for a better and 

more geometry based parameterized approach to segment 

buildings from a given LiDAR scene. 

 

Our work takes these different ideas of height thresholding, 

planarity of roof surfaces etc to formulate a composite new 

technique to segment buildings from a LiDAR scene. Further 

detailed analysis of the method proposed is explained in Section 

3 of the paper. The focus of the paper is to segment both 

rectilinear as well as non-rectilinear shaped objects from the 

given scene. 

 

2. DATA MODEL AND SIMULATION 

2.1 Synthetic Dataset - SimLiDAR 

Sim lidar is a synthetic data set created to test the segmentation 

algorithm. The objects present in sim-lidar vary from simple 

objects like cube shaped buildings. Incrementally, the 

complexity of the buildings increases like gabled shaped 

buildings, ladder shaped buildings, complex shaped buildings 

with shape of ‘L’, ‘U’, ‘T’ etc.  

 

The objects are stored in the X, Y, Z format, where every line of 

the file signifies a point in the point cloud. The LiDAR files 

being generated are parametric in nature and can be changed 

according to the needs of the experiment. Further different 

complex geometries can also be programmed to add to the 

existing set of possibilities. Different cases which have been 

simulated to test the algorithm:  

 

1. Simple cubic or cuboid shaped building without 

extensive features 

2. Multiple cubic objects are taken in the same scene 

3. Complex shaped buildings, with planar geometries. 

Eg. Horseshoe shaped building  

4. Cubic building with random angle of rotation along 

the z-axis from the frame of reference 

5. N-sided polygon, where all the surfaces are planar and 

regular in nature 

6. Different cases of variability in the shape of the roof 

of the buildings 

7. Buildings with extensions over the top of building, to 

simulate an AC unit over the roof of the building 

8. Complex buildings shapes like concentric walled 

buildings with an empty space in the centre. 

9. Complex buildings shapes with single seed point 

branching out into multiple walls at a single point. 

10. Ladder shaped buildings, where the height of the roof, 

changes at regular intervals. 

 

 

 
Figure 1. Sample Objects from SimLiDAR - having 

cube shaped, Complex Shaped, Gabled roof, 

Buildings with extensions 

 

2.2 Using Blender to simulate complex LiDAR objects 

Programming curvilinear objects is a different challenge of its 

own. Hence, objects are created using Blender to simulate 

further complex objects using Blender. The output file being 

generated by the program is saved in the format of obj. 
 
The density of the object can be increased and decreased by 

using the subdivide tool of the program.  The subdivide tool is 

used to increase fragmentation of the object into multiple 

number of the points. Thus, leading to the increase in the spatial 

resolution of the scene. Finally, the designed 3D model needs to 

be exported in the format of obj for further parsing. 
 
This obj file needs to be parsed selectively, to record the 

respective points in the point cloud. The obj file usually 

contains additional information with regard to the edges, faces 

etc. Hence, care should be taken while parsing the obj file, to 

ensure the required information is only taken up. 
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Figure 2. Sample Objects created from Blender (a) Building 

with minarets (b) Building with centre courtyard 

 

2.3 Vaihingen Dataset 

Vaihingen dataset is the ISPRS benchmark dataset on Urban 

Classification and 3D Building Reconstruction. The primary 

objective of such dataset is for object classification and building 

reconstruction tasks. 

[http://www2.isprs.org/commissions/comm3/wg4/tests.html] 

 

 
Figure 3. Vaihingen Dataset 

 

The ALS data of three specific regions is provided for testing 

purposes of building extraction algorithms. The three areas 

provided have unique characteristics of their own, explained 

below:  

 

 Area 1: "Inner City" contains historic buildings 

having complex shapes and some trees 

 Area 2:  "High Riser" contains residential buildings 

that are surrounded by trees 

 Area 3: "Residential Area" represents purely 

residential area with small detached houses.  

 

3. ALGORITHM 

The processing pipeline was initially tested with the synthetic 

data, which is a high density data. The major steps of the 

algorithm consists of taking the non-ground points from a 

LiDAR scene and extracting walls from the given buildings. 

After different walls have been constructed, the next task is to 

combine all such segments into a close shaped polygon to form 

the footprint of the building.  

 

The non-ground points in a given scene is generated from the 

lasground application, part of the LAStools package 

[https://rapidlasso.com/lastools/]. The non-ground points of 

lasground is filtered and stored as TXT format. This text file is 

used as the input for the whole processing pipeline. 

 

 
 

Figure 4. Flowchart of the building segmentation algorithm 

 

The ISPRS Benchmark dataset which simulates the real world 

LiDAR data has much lower point density, where we can't 

differentiate between an interior roof point and a wall surface of 

the building. Thus, to adapt to such low density data, we 

propose an additional rule based framework to remove the over 

segmented regions in a segmentation task. Here, there are very 

less number of points with multiple return points on the outer 

surface of the building. Hence, to tackle this lack of density, the 

algorithm was modified as explained in the subsequent sections 

of 3.6. 

3.1 Seed Point Extraction 

A given building is made up of different wall segments. The 

wall segments are made up of different chunks. A chunk is 

made up of different seed points. Seed point is a (X, Y, Z*) 

point in the point cloud which might be part of the building. 

The value of the Z varies, while the X and Y coordinates remain 

same for a given seed point. 

 

 
 

Figure 5. Visual representation of a seed point, chunk and 

segment. 

 

3.2 Chunk Segmentation 

In this subpart of the processing pipeline, multiple seed points 

are combined to form a single chunk. A single chunk consists of 

multiple seed points. The criteria for forming a chunk starts 

from a single seed point, which is chosen at the beginning of the 

step. At a given seed point, a new frame of reference is 

constructed. The seed point forms the new origin and the z-axis 

is parallel to the initial frame of reference. With the new frame 

of reference in place, we rotate this frame of reference over all 

possible angles i.e. from 0° to 360° in the X-Y plane. At a given 

rotation of the frame of reference, we find a continuous set of 
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seed points which have a similar profile, to form a chunk. The 

plane created from the chunk is crucial to define the small part 

of the wall segment.  

 

This segmentation of chunk thus depends on only two 

parameters, the number of points required to be qualified to be a 

chunk and the rotation increment to find a chunk. Higher the 

number of points required to be in a chunk, it will segment large 

objects only from the scene and vice versa. Similarly, a very 

small rotation increment will give highly dense chunks in a 

given scene. The runtime of the program is inversely 

proportional to the rotation increment parameter and directly 

proportional to the number of seed points required in a chunk. 

Thus, chunks are the building blocks of the walls or segments in 

our technique. If no chunks are identified, no walls can be 

formed. 

 

3.3 Wall Extraction 

3.3.1 Merging Chunks: As we had seen earlier, that 

multiple seed points combine to form a chunk. Similarly, 

multiple extracted chunks are merged together to form a wall 

section. The merging of the chunks gives the respective walls of 

the buildings separately. The criteria of the merging of 

consecutive chunks rely on the angle between the respective 

normals of the plane obtained from the chunk. If the angle 

between the normals of the plane is within a threshold level, 

they are merged to be part of the same wall. The threshold angle 

between the normals is a user-defined metric. 

 

The motivation to include the angle as a parameter between two 

chunks is to segment curved surfaces from the scene. The 

curved objects don't have distinct edges or boundaries which 

can be segmented separately. Thus to incorporate curved walls 

and surfaces, the normals between the chunks are used to 

segment them as a single entity. 

 

The angle between the normals of the two segments is crucial to 

segment curved surfaces from the LiDAR scene. Having a very 

large threshold angle might lead to under-segmentation where 

the close by objects might get identified as part of the same 

object. Having a very small threshold angle might not identify 

the curved wall as a single unit, rather as multiple units (case of 

over segmentation). 

 

 
Figure 6. Localized sliding window movement of chunks for 

segment identification 

 

3.3.2 Sliding Window for Chunk Merging: Sliding 

window technique is applied over the given scene to merge the 

chunks. The novelty of the sliding window is that it ensures that 

the consecutive chunks have some common points between 

them and the movement of the consecutive chunks is done in a 

gradual manner in order to incorporate the complete curved 

wall without any over segmentation or  under segmentation. The 

common points between the consecutive chunks ensures that the 

normals of the planes of the chunk don’t vary drastically at 
short increments. Hence, helping further to segment curved 

walls in a gradual manner. 

 

Figure 6 shows two consecutive chunks under consideration. 

Here we can see that the normals of the respective chunks are 

constructed. If the normals intersect within the threshold angle 

or are parallel to each other, then both the chunks are added to 

be part of the same wall. Note that all the outer surface points 

have multiple return points which are well spaced and hence 

they are part of the seed points and the other remaining points 

don't form the part of the seed points.  

 

3.3.3 Z-profile Matching: This sub-step of the processing 

pipeline ensures that the consecutive seed points in a given 

segment are similar to each other and don’t vary drastically. The 
reason of Z-profile matching ensures that the height and the 

pattern in a segment remains constant over the whole segment. 

The measure of similarity used in our work relies on finding the 

edit distance between the consecutive seed points. If the edit 

distance between the points is above a threshold, then the 

segments won’t be considered part of the same wall and will be 

split as different walls. The exact use case of this feature can be 

seen the building with ladder shaped extension, as discussed in 

Section 4. 

 

 
Figure 7. Extracted segment shown in Red (Top view) 

 

   

3.4 Cyclical Extension of Wall Segments 

Buildings can be made up of different wall segments. Exploiting 

this cyclical nature of the respective wall segments, we combine 

the intersecting wall segments with a common end to form a 

building. 
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                       (a)                                            (b) 

 

Figure 8. (a) Identification of wall segments in a given scene (b) 

Cyclical Merging of segments to form potential building 

 

3.5 Footprint Creation and Merging 

Footprint creation and merging step involves the merging of 

completely overlapping identified buildings candidates. In the 

footprint creation step, we merge the different identified 

segments. The merging of different segments works on the 

principle of cyclical nature of the segments of the building. All 

the segments of any buildings have a common intersection point 

aka edge point. All the segments merge in this fashion, and end 

when the new segment repeats it occurrence. 
 
After the respective potential building footprints have been 

identified, the next step of the processing pipeline is to do some 

post-processing, which involves merging of overlapping 

potential buildings. The requirement of such post processing is 

justified in the case of some specific buildings like buildings 

with varying roof surface like a ladder shaped building or a 

building with minarets, building with holes like a centre 

courtyard. These cases have been extensively discussed in the 

observation section of the paper. 

 

 
 

Figure 9. Footprint creation of the building 

 

3.6 Density Based Clustering - Adaptation to real world 

data 

In case of real world data, the point cloud can be of low density, 

with lack of points to segment the walls from the object in the 

scene. To adapt to this challenge, we made some changes to the 

algorithm mentioned previously. The modification in the 

respective sub-parts of the processing pipeline is mentioned 

below.  
 

3.6.1 Segment Identification: The segment identification 

step with respect to the density based clustering has a very small 

rotation increment and high points threshold. This is done to 

retrieve a very dense network of segments in the given scene 

about the different buildings. 

 

3.6.2 Neighbouring Cluster Separation: After the potential 

segments have been extracted from the scene, same as seen in 

Section 3.2. The next subtask of the processing pipeline is to 

separate multiple clusters of segments from each other. The 

similar segments are clustered together to form an approximate 

extent of the “potential” building.  
 

A proximity based measure is used to segment the different 

blobs of segments from each other. If two segments of different 

classes are nearby a segment from some other class, then both 

these classes are merged to a single class containing segments 

from both the previous classes. A Z-profile based measure is 

also used as an agonistic measure to prevent the merging of 

multiple blobs with one another. Only those clusters with 

similar Z-profile and proximity will combine to give a set of 

cascaded segments.  

 

There are clusters which aren’t part of the building, that are 
segmented in this step as well. Density of the segmented mass 

points and other rule based parameters are defined in the 

subsequent steps to eliminate such non-building clusters. 

 

Since, the segments contain only those points where the height 

of the points in the set are similar to each other. Thus,  

overlapping objects in the scene are segmented separately on 

the basis of previous assumption.  

 

3.6.3 Density Evaluation: The point cloud of a building 

being uniform, is distributed evenly compared to that of trees. 

This uniformity and high density of segments distribution gives 

us a clear metric to evaluate the density of the cluster of 

segments obtained from the previous step, in order to separate 

the non-building clusters. Such clusters are thus filtered away 

from the final results. 

 

The density evaluation step proposed in the work is input data 

dependent and hence makes the algorithm semi-automatic with 

respect to low density LiDAR data. The filtering parameter 

proposed in the work shouldn’t be considered to be specific. 
Rather, multiple such similar filters can be created to remove 

the non-building clusters. 

 

Some examples of the other filters that can be incorporated into 

the algorithm for separating the non-building clusters can be on 

the basis of: 

 

1. Sum of the degree of connection with other nodes in 

the same cluster 

2. Height thresholding techniques to remove near ground 

vegetation and other non-ground points. 

3. Average Height Variation in the cluster by putting the 

respective height values into the designated bins. 

4. Deriving features from the Elevation distribution of 

points in the given cluster 

5. Ratio between Length and Breadth of the given cluster: 

It might remove the segments that are segmented 

which signify a long stretch of vegetation or road of 

the cluster. 
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Currently the filters are limited to density parameter only, 

referred below 

 

   (1) 

 

where  n = number of seed points in the cluster 

 N = number of all potential segments connected with 

the boundary of the cluster 

 

3.6.4 Footprint Extraction Using Local Convex Hull: 

After the clusters have been further filtered using the density of 

the cluster, we are left with the task of creating footprints of the 

building. Rather than cyclical completion of the segments as 

seen in the sample data processing, we formulate the creation of 

local convex hulls to create the building footprints.  

 

The proposal to use local convex hull is primarily hinged on 

that fact that, the buildings with overhangs or extension will 

result in incorrect footprints. If we take the conventional convex 

hull formulation, all the outer surface points won’t be covered 
in the previous instance. 

 

In a local convex hull, we chose a point in the convex hull and 

take n neighbouring points and create a new convex hull among 

those points. After such multiple localized convex hulls are 

created, we merge them to get the final convex hull, which 

signifies the footprint of the building. Thus, the flowchart of the 

modified approach of density based clusters is shown below  

 

 

 

 
 

Figure 10. Footprint creation of the building 

 

4. OBSERVATIONS AND CONCLUSION 

As stated earlier the segmentation algorithm focussed on 

extracting the facades of the buildings to construct the 

footprints of the buildings. The potential advantages of our 

algorithm is based on the non-dependence on any other form of 

supplementary data. The algorithm was tested on objects of 

both simulated and real world data. 

The simulated objects consisted of more variety of objects 

compared to the real world data, which had specific kinds of 

buildings i.e. flat roofed and gabled roofed buildings. Thus, the 

simulated dataset tested the algorithm on the variety of different 

objects for segmentation. While the real world dataset simulated 

the inconsistency and the challenges of current LiDAR 

information systems. 

  

4.1 Observations on the synthetic dataset 

The algorithm was tested incrementally starting from simple 

objects like cubes and cuboids, then moving onto multiple 

objects in a single LiDAR scene. Then the complexity 

progressed to peculiar buildings like ladder shaped buildings or 

buildings with minarets.  

 

In case of buildings with minarets, the sections consisting of 

minarets, owing to the variation in the Z-profile are segmented 

separately compared to the other parts of the building. Thus, for 

the same building we get 5 different footprints. 4 small 

footprints, signifying the 4 minarets present in the buildings, 

which are segmented out separately and the remaining footprint 

covering the rest of the building. Since the footprints of the 

respective minarets occur completely within the footprint of the 

remaining part of the buildings. All the 5 footprints are merged 

to a single footprint to signify the building with minarets. 

 

The similar case happens with a ladder shaped building where 

the Z profile sub-sections consisting of stepped ladder are 

separated into different sections in spite of being part of the 

same wall. The side profile of such ladder shaped building is 

shown below: 

 

 
Figure 11. Side-View of the Ladder shaped building where the 

same wall is divided into three sub-parts owing to the different 

XZ-profile. 

 

4.2 Observations on the real world dataset  

 

 

 
 

Figure 12.  Real world LiDAR, where we can see that the walls 

don't have multiple return values and not easily separable (a) 

Perspective view (b) Top view (c) Side View 
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As stated earlier, the real world benchmark dataset provided by 

ISPRS of Vaihingen, Germany is a very sparse data set, where 

the wall surface can't be easily separated from a interior point of 

the building. Hence, we overestimate the interior part of the 

building to be part of the wall surface as well and formulate a 

strategy to segment only the building segments. 

 

A neighbourhood based clusters are formed based on the 

proximity and height similarity metric of the close by segments 

belonging to different clusters. After the respective clusters 

have been formed, the rule based framework is constructed to 

segment those regions only that form a building (in the current 

data, they very dense compared to other clusters). Below shows 

a sample taken from a small part of Area 2 of the VA dataset. 

The corresponding results of the given area show promising 

results of the building segmentation with scope for further 

analysis and evaluation. 

 

 

 

   
(a)                                 (b) 

 

       
      (c)                                 (d) 

 

 
(e)                                         (f) 

 

 

Figure 13.  (a) Satellite Area of study (b) Segment Extraction 

(c) Remaining Segments after rule based Height thresholding 

(d) Remaining Segments after Rule based filtering (e) Final 

local convex hull of the potential building (f) Gabled roof 

building segmented from the input LiDAR data shown in red 

 

   

5. FUTURE WORK 

In our work, we tried to tackle the problem of segmenting 

buildings only using the LiDAR data of the area and no other 

supplementary datasets. The proposed technique is a 

unsupervised method of segmentation. Thus, requiring no 

training and modelling of classifiers. The problem was 

formulated in a bottom up manner, where we first created 

synthetic datasets for testing our approach and then jumped 

over to the real world datasets for verification of the hypothesis. 

 

The objective of building detection and footprint identification 

was successfully achieved. Building shaped objects were 

segmented both from the simulated dataset and the real world 

dataset. In spite of low density of the benchmark dataset, the 

algorithm was tweaked to incorporate such data, which shows 

its versatility in terms of ease with multiple types of data 

formats. 
 
The future work of this project may involve using higher 

density LiDAR data for further enhancements to the algorithm. 

Further analysis of the approach against completeness and/or 

correctness of the segmentation needs to be carried out for a few 

real world datasets. Better rule based filters could be 

constructed in a tool format, which could readily be used to 

filter and visualize LiDAR cloud points. The final extension of 

the work can explore on the ways to fuse terrestrial and aerial 

LiDAR datasets to produce better quality results of object 

segmentation and classification in a real world scenario. 
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