Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B7, 757-761, 2016
http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLI-B7/757/2016/
doi:10.5194/isprs-archives-XLI-B7-757-2016
 
21 Jun 2016
LAND COVER MAPPING USING SENTINEL-1 SAR DATA
S. Abdikan1, F. B. Sanli2, M. Ustuner2, and F. Calò3 1Department of Geomatics Engineering, Bulent Ecevit University, 67100 Zonguldak, Turkey
2Department of Geomatics Engineering, Yildiz Technical University, 34220 Esenler-Istanbul, Turkey
3National Research Council (CNR) of Italy – Istituto per il Rilevamento Elettromagnetico dell’Ambiente (IREA), Diocleziano 328, 80124 Napoli, Italy
Keywords: Sentinel-1A, Synthetic Aperture Radar, Land cover classification, Support Vector Machines, Istanbul, Turkey Abstract. In this paper, the potential of using free-of-charge Sentinel-1 Synthetic Aperture Radar (SAR) imagery for land cover mapping in urban areas is investigated. To this aim, we use dual-pol (VV+VH) Interferometric Wide swath mode (IW) data collected on September 16th 2015 along descending orbit over Istanbul megacity, Turkey. Data have been calibrated, terrain corrected, and filtered by a 5x5 kernel using gamma map approach. During terrain correction by using a 25m resolution SRTM DEM, SAR data has been resampled resulting into a pixel spacing of 20m. Support Vector Machines (SVM) method has been implemented as a supervised pixel based image classification to classify the dataset. During the classification, different scenarios have been applied to find out the performance of Sentinel-1 data. The training and test data have been collected from high resolution image of Google Earth. Different combinations of VV and VH polarizations have been analysed and the resulting classified images have been assessed using overall classification accuracy and Kappa coefficient. Results demonstrate that, combining opportunely dual polarization data, the overall accuracy increases up to 93.28% against 73.85% and 70.74% of using individual polarization VV and VH, respectively. Our preliminary analysis points out that dual polarimetric Sentinel-1SAR data can be effectively exploited for producing accurate land cover maps, with relevant advantages for urban planning and management of large cities.
Conference paper (PDF, 1644 KB)


Citation: Abdikan, S., Sanli, F. B., Ustuner, M., and Calò, F.: LAND COVER MAPPING USING SENTINEL-1 SAR DATA, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B7, 757-761, doi:10.5194/isprs-archives-XLI-B7-757-2016, 2016.

BibTeX EndNote Reference Manager XML