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ABSTRACT: 

 

Since people spend most of their time indoors, their indoor activities and related issues in health, security and energy consumption 

have to be understood. Hence, gathering and representing spatial information of indoor spaces in form of 3D models become very 

important. Considering the available data gathering techniques with respect to the sensors cost and data processing time, single 

images proved to be one of the reliable sources. Many of the current single image based indoor space modeling methods are defining 

the scene as a single box primitive. This domain-specific knowledge is usually not applicable in various cases where multiple 

corridors are joined at one scene. Here, we addressed this issue by hypothesizing-verifying multiple box primitives which represents 

the indoor corridor layout. Middle-level perceptual organization is the foundation of the proposed method, which relies on finding 

corridor layout boundaries using both detected line segments and virtual rays created by orthogonal vanishing points. Due to the 

presence of objects, shadows and occlusions, a comprehensive interpretation of the edge relations is often concealed. This 

necessitates the utilization of virtual rays to create a physically valid layout hypothesis. Many of the former methods used 

Orientation Map or Geometric Context to evaluate their proposed layout hypotheses. Orientation map is a map that reveals the local 

belief of region orientations computed from line segments, and in a segmented image geometric context uses color, texture, edge, 

and vanishing point cues to estimate the likelihood of each possible label for all super-pixels. Here, the created layout hypotheses are 

evaluated by an objective function which considers the fusion of orientation map and geometric context with respect to the horizontal 

viewing angle at each image pixel. Finally, the best indoor corridor layout hypothesis which gets the highest score from the scoring 

function will be selected and converted to a 3D model. It should be noted that this method is fully automatic and no human 

intervention is needed to obtain an approximate 3D reconstruction. 

 
 

 

1. INTRODUCTION 

How much time are you spending at your apartment,/house, 

office, or other indoor places every day? According to the U.S. 

Environmental Protection Agency (EPA), approximately 

318,943,000 people in United States, spend around 90% of their 

time at indoor places (U.S. EPA, 2015). This record simply 

shows how crucial the spatial information of the indoor places 

could be. In recent years, spatial information of indoor spaces 

provided in the context of Building Information Models (BIM) 

has gained a lot of attention not only in the architectural 

community but also in other engineering communities. The 

semantically rich and geometrically accurate indoor models can 

provide powerful information for many of the existing 

engineering projects. However, gathering the spatial 

information of indoor spaces with complex structures is difficult 

and it needs a proper implementation of sensors. Moreover, 

implementing the suitable reconstruction algorithm for 

generating the indoor space 3D models which has to be also 

adaptive to the incoming data is pretty much crucial. 

Considering the cost and data processing time, single images 

proved to be one of the reliable data gathering sources for 

modeling. Even though recovering the 3D model from a single 

image is inherently an ill-posed problem and usually single 

images can only cover a limited field of view, they are still 

suitable for modeling well-structured places of indoor spaces. 

Given a single image from a well-structured corridor, our goal 

is to reconstruct the corridor scene in 3D. That is, given only a 

monocular image of a corridor scene, we can provide a 3D 

model allowing the potential viewer to virtually explore the 

corridor without having to physically visit the scene. This adds 

another dimension to static GIS at indoor places, and is 

particularly convenient for buildings where direct search in 

those places is particularly time consuming. 

Recovering vanishing points by the help of straight line 

segments in a single image is a basic task for understanding 

many scenes (Kosecka and Zhang, 2005). Usually rectangular 

surfaces which are aligned with main orientations in an image 

can be detected with the help of vanishing points (Kosecka and 

Zhang, 2005; Micusik et al., 2008). Han and Zhu (2005) applied 

top-down grammars on detected line segments for finding grid 

or box patterns in an image. Vanishing points were also used by 

Yu et al., (2008) to infer the relative depth-order of partial 

rectangular regions in the image. However, vanishing points are 

not the only cues for understanding the scenes. Hoiem et al., 

(2005) utilized some statistical methods on image properties to 

estimate regional orientations. Since statistical methods showed 

their ability, statistical learning gradually become an alternative 

to rule-based approaches for scene understanding (Hoiem et al., 

2005; Hoiem et al., 2007). Usually in these approaches having a 

new image, the list of extracted features should be evaluated. 

Normally, the associations of these features with 3D attributes 
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can be learned from training images. Hence, the most likely 3D 

attributes can be retrieved from the memory of associations. 

Although to some extent scene understanding is feasible 

through applying statistical learning or rule based approaches, 

fully inferring 3D information from a single image is still a 

challenging task in computer vision. The problem itself is ill-

posed. Yet, prior knowledge about the scene type and its 

semantics might help resolve some of the ambiguities (Liu et 

al., 2015). If the scene conforms to Manhattan world 

assumption, then impressive results can be achieved for the 

problem of room layout estimation (Lee et al., 2009; Hedau et 

al., 2009). It should be noted that if the 3D cuboid that defines 

the room can be determined, then the room layout is actually 

estimated. Room layout estimation is a very challenging and 

exciting problem that received a lot of attention in the past 

years. Lee et al., (2009) introduced parameterized models of 

indoor scenes which were fully constrained by specific rules to 

guarantee physical validity. In their approach, many spatial 

layout hypotheses are sampled from collection of straight line 

segments, yet the method is not able to handle occlusions and 

fits room to object surfaces. Hedau et al., (2009) integrated local 

surface estimates and global scene geometry to parametrize the 

scene layout as a single box. They used appearance based 

classifier to identify clutter regions, and applied the structural 

learning approach to estimate the best fitting box to the image. 

Another approach similar to this has been proposed which does 

not need the clutter ground truth labels (Wang et al., 2010). 

There are some other approaches related to the 3D room layout 

extraction from single images (Hedau et al., 2010; Lee et al., 

2010; Hedau et al., 2012; Pero et al., 2012; Schwing et al., 

2012; Schwing and Urtasun, 2012; Schwing et al., 2013; Chao 

et al., 2013; Zhang et al., 2014, and Liu et al., 2015). Most of 

these approaches parameterize the room layout with a single 

box and assume that the layout is aligned with the three 

orthogonal directions defined by vanishing points (Hedau et al., 

2009; Wang et al., 2010; Schwing et al., 2013; Zhang et al., 

2014, and Liu et al., 2015). Some of these approaches utilize 

objects for reasoning about the scene layout (Hedau et al., 2009; 

Wang et al., 2010, and Zhang et al., 2014). Presence of objects 

can provide some physical constraints such as containment in 

the room and can be employed for estimating the room layout 

(Lee et al., 2010; Pero et al., 2012, and Schwing et al., 2012). 

Moreover, the scene layout can be utilized for better detection 

of objects (Hedau et al., 2012, and Fidler et al., 2012). 

 

 

Figure 1. The proposed method detects edges and groups them 

into line segments. It estimates vanishing points, and creates 

layout hypotheses. It uses a linear scoring function to score 

hypotheses, and finally converts the best hypothesis into a 3D 

model. 

 

In our work, we take the room layout estimation one step 

further. Our goal is to estimate a layout for a corridor which 

might be connected to the other corridors from a monocular 

image. Therefore, there would be no single box constraint for 

the estimation of the scene layout. We phrase the problem as a 

hypothesis selection problem which makes use of middle-level 

perceptual organization that exploits rich information contained 

in the corridor. We search for the layout hypothesis which can 

be translated into a physically plausible 3D model. Based on 

Manhattan rule assumption, we adopt the stochastic approach to 

sequentially generate many physically valid layout hypotheses 

from both detected line segments and virtually generated ones. 

Here, each generated hypothesis will be scored to find the best 

match. Finally, the best generated hypothesis will be converted 

to a 3D model. Figure 1, shows the workflow of the proposed 

method. 

The main contribution of the proposed method is the creation of 

corridor layouts which are no more bounded to the one single 

box format. The generated corridor layout provides a more 

realistic solution while dealing with objects or occlusions in the 

scene. Hence, it is well-suited to describe most corridor spaces, 

and it outperforms the methods which are restricted to one box 

primitive for estimating the scene layout. Also, we propose a 

scoring function which takes advantage of both orientation map 

and geometric context for scoring the created layout hypotheses. 

Since no suitable data exists for this task, we also collected our 

own dataset by taking pictures from York University Campus 

buildings. We collected images from various buildings, 

resulting in the total of 78 single images. We labeled our data 

with rich annotations including the ground-truth layout and the 

floor plan of each corridor within the buildings. In the following 

section an overview of the proposed method will be provided. 

 

2. INDOOR CORRIDOR DATASET 

The goal here is to estimate indoor corridor layout in a single 

image. Hence, we collected our dataset by crawling through 

different indoor locations at York University campus area in 

Toronto, Canada. We chose different places such as 

Behavioural Science, Petrie Science, Osgoode Hall and Ross 

buildings. These buildings were chosen due to their free 

accessibility over time, presence of indoor corridors which are 

aligned with Manhattan structure format and also having floor 

plans. To get the data, we walked through the buildings during 

weekends and out of many locations, we took some images with 

sufficient resolution which had clear view of the main and side 

corridors. Statistic wise, the selected locations in the taken 

images have in total 297 corridors, 1283 walls, 206 doors, and 

53 windows. The number of photos for each corridor ranges 

from 1 to 5, with the total number in our dataset being 78, not 

counting the single room images. 

We associated the data with different types of ground-truth. We 

associated the corridor outline, corridor type, as well as the 

position of doors and windows. Note that we intentionally 

picked up corridors which have simple and rectangular outline, 

but not necessarily all the corridors in the dataset do not have a 

complex polygonal shape. Roughly, less than seven percent of 

corridors in the dataset have a complex polygonal shape. In 

each photo we identified the ceiling, floor, front, left, and right 

wall, for the main corridor as well as the ceiling, floor, right or 

left wall for the side corridors. In order to identify these planes 

in an image, the respective corner points of these structural 
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planes were manually pinpointed in the image, and their image 

coordinates were saved in an individual files. Later on these 

image coordinates were used to create the ground truth 

orientation image and 3D model of the corridor layout. 

 

 

Figure 2. From left to right: sample image from dataset, 

identified layout corner points, ground truth orientation image 

and the respective 3D textured model. 

 

It should be noted that in some cases defining the indoor 

corridor layout in an image is a very challenging task even for a 

human. This is due to the complex polygonal shape of the 

building indoor layers. In most cases we resolved the problem 

by considering the semantics, such as the type of scene, the 

presence of doors and windows, and sometimes even presence 

and location of objects. However, there were cases where even 

humans could not estimate the correct layout. In such cases, we 

allowed ourselves to omit the ambiguous examples from the 

dataset. Scene complexity has a governing role in categorizing 

the created dataset. Scene complexity by itself is a subjective 

term which may oppose some confusion to anyone’s mind. 

Although various factors have been identified to have an impact 

on scene complexity, we define scene complexity as a function 

of three major factors. These factors are: a) scene type or the 

number of structural planes, b) presence of objects and 

occlusions, c) length of corridors. Even though explicitly 

expressing these factors and their impacts on the overall scene 

complexity was not possible, we implicitly considered these 

factors for categorization of the prepared dataset. Considering 

scene complexity, the dataset is partitioned into three image 

categories which have simple, complex, and very complex 

indoor layout. Figure 2, shows a sample image from dataset 

along with identified structural planes corner points, ground 

truth orientation image and the respective 3D textured model. It 

should be noted that this dataset will be officially available to 

the public in the near future. 

 

3. LAYOUT ESTIMATION 

While indoor space modeling is possible through applying 

either top-down or bottom-up approaches, it would be naive to 

choose any of these approaches without considering their pros 

and cons. Top-down approaches can be labelled as 

deterministic, and this labelling could be justified by their 

dependency on employing strong prior. Hence, top-down 

approaches are usually more robust to the missing data problem. 

An example of applying top-down approach is the indoor 

modeling method presented by Hedau et al. (2009). While top-

down approaches are very much deterministic in employing 

strong priors, bottom-up approaches usually make use of weak 

priors. Therefore, in bottom-up approaches the perception forms 

by data. This basically means that if you adopt a bottom-up 

approach for indoor space modeling, then you expect the 

created model to be more flexible compare to a model created 

by applying a top-down approach (Baligh Jahromi and Sohn, 

2015). 

Most of the time, indoor modeling using a single image has to 

deal with the presence of clutters and occlusions in the scene. 

Hence, missing data problem could be a major issue in using 

single images for indoor modeling. Since top-down approaches 

are more robust to the missing data problem, they could be 

better approaches to be chosen for indoor modeling based on a 

single image. The proposed method in this paper is more 

inclined to a top-down approach, and it is governed by this 

strong prior that the indoor scene layout must have a cubic 

formation. Yet, what makes this method different from the 

others is that this method does not restrict the indoor scene 

layout to be comprised of only one box. The proposed method 

relaxes the strong prior that indicates the indoor layout is 

comprised of only one box and let the incoming layout to be 

comprised of multiple connected boxes. This advantage of the 

proposed method targets the modeling of occluded areas in the 

scene. 

The overall workflow of the proposed method is as following; 

1) Edges are extracted in the single image, and grouped into 

straight line segments. 2) Line segments will be grouped based 

on parallelism, orthogonality, and convergence to common 

vanishing points. 3) Many physically valid major box layout 

hypotheses will be created using detected line segments and 

virtual rays of vanishing points. 4) The created major box layout 

hypotheses will be scored by a linear scoring function. 5) Only 

20% of the layout hypotheses which get higher scores will 

remain in the hypothesis generation pool and the rest will be 

discarded. 6) The remaining major box layout hypotheses will 

be deformed by sequentially introducing side box hypotheses to 

their structure. Note that the maximum number of side box 

hypotheses which can be integrated to a major box hypothesis is 

four. 7) The generated side box hypotheses will be also scored, 

and only the hypothesis which gets the highest score will 

remain in the hypothesis generation pool. 8) Finally the best 

fitting layout hypothesis is selected by comparing the scores, 

and it will be converted to a 3D model. 

3.1 Vanishing Points 

Single images captured from indoor places are prone to sustain 

straight line segments. Straight line segments can be detected in 

an image by linking the extracted edge pixels based on 

predefined criteria. In most of the manmade structures there are 

bunch of parallel line segments that converge to the orthogonal 

vanishing points. Mainly there are four different methods for 

estimating vanishing points (Bazin et al., 2012): 1) Hough 

Transform (HT), 2) Random Sample Consensus (RANSAC), 3) 

Exhaustive Search on some of the unknown entities, and 4) 

Expectation Maximization. 

Here, the Line Segment Detector (LSD) method is applied for 

extracting straight line segments in an image (Grompone von 

Gioi et al., 2010). This method is a linear-time line segment 

detector which can provide sub-pixel accurate results without 

tuning the parameters. Later, a modified RANSAC approach is 

applied for estimating vanishing points. In RANSAC approach 

two straight line segments will be randomly selected and 

intersected to create a vanishing point hypothesis and then count 

the number of other lines (inliers) that pass through this point. 

The drawback of RANSAC is that it does not guarantee the 

optimality of its solution by considering the maximum 

intersecting lines as inliers. Here, we follow Lee et al. (2009) to 
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find three orthogonal vanishing points. In Lee et al. (2009) the 

coordinates of the RANSAC solution are fine-tuned using non-

linear optimization with a cost function. 

3.2 Layout Hypotheses Creation 

In order to facilitate the indoor modeling using a single image, 

we forced the indoor scene layout to be comprised of at least 

five structural planes which simply define a single box. Here, 

main orthogonal walls in indoor places are at the primary 

interest to be created compare to windows or doors. Since 

indoor corridor layouts are not usually bounded to only one box, 

we define corridor layouts by integration of different single 

boxes. Hedau et al. (2009) proposed a method for creation of a 

single box layout hypothesis by sampling pairs of rays from two 

furthest orthogonal vanishing points on either side of the third 

vanishing point. However, this approach may not provide 

acceptable results when dealing with long corridors due to the 

position uncertainty for the estimated vanishing points. Here, 

the corridor layout is created by utilization of both detected line 

segments and sampled rays from vanishing points. 

 

 

Figure 3. Creating key box Layout hypothesis by intersecting 

line segments (solid lines) and created virtual rays (dashed 

lines) using vanishing points. 

 

Here, the corridor layout will be gradually improved from a one 

box layout to multiple box layouts. Hence, the key box layout 

hypothesis has to be created first. In order to create the key box 

hypotheses, let Lx = {lx,1, lx,2, . . . , lx,n} and Tx = {tx,1, tx,2, . . . , 

tx,n} be the set of actual line segments and virtually generated 

rays of orientation x, where x Є {1, 2, 3} denotes one of the 

three orthogonal orientations. A key box layout hypothesis “H” 

is created by intersecting selected lines from Lx and Tx where 

the minimum number of selected line segments from Lx is 4, 

and the total number of all lines needed for this creation is 8. 

Figure 3, shows the creation of a key box layout hypothesis 

through intersecting solid and dashed lines which are 

representing actual line segments and virtually generated rays 

respectively. Having created the key box layout hypotheses, 

side box layout hypotheses will be sequentially introduced to 

every key box layout hypothesis. More detail information on 

creating layout hypotheses can be found in (Baligh Jahromi and 

Sohn, 2015). 

4. LAYOUT EVALUATION 

As mentioned in the previous section, the created layout 

hypotheses must undergo an evaluation process for selection of 

the best fitting hypothesis. Here, a linear scoring function is 

defined to score each hypothesis individually. Given a set of 

created layout hypotheses in the image space {h1, h2, ...hn} ∈   H, 

we wish to do the mapping S: H → R which defines a score for 

every layout hypothesis. The proposed scoring function takes 

some independent factors into consideration. The proposed 

scoring function “S” can be decomposed into the sum of three 

individual scoring functions, which characterize different 

qualities of the created layout hypotheses. Each of the 

individual scoring functions is focusing on: a) volume 

maximization, b) maximization of edge-correspondences, and c) 

orientation map (OM) and geometric context (GC) 

compatibility, respectively. These functions, together encode 

how well the created layout hypothesis represents the scene 

layout in the image space. We thus have 

 

S(hi) = w1 × Svolume(hi) + w2 × Sedge(hi) + w3 × Som&gc(hi)    (1) 

 

 

where  hi = candidate hypothesis 

 S = scoring function 

 Svolume = scoring function for volume 

 Sedge = scoring function for edge correspondences 

 Som&gc = scoring function for OM and GC 

 W1,2,3 = weight values 

 

 

It should be noted that the above weight values are define 

through conducting experimental test on ground truth data. Lee 

et al. (2010) imposed some volumetric constraints to estimate 

the room layout. They model the objects as solid cubes which 

occupy 3D volumes in the free space defined by the room walls. 

We interpret object containment constraint as the search for the 

maximum calculated volume among all of the created layout 

hypotheses. Therefore, a higher score will be given to the layout 

hypothesis which has a larger volume. In other words, the 

layout hypothesis which covers a larger area is more probable to 

contain all of the objects in the room. The calculated score will 

be normalized to a positive real number between zero and one. 

The other function which considers edge-correspondences gives 

the highest score to the layout hypothesis which has the 

maximum positive edge-correspondences to the detected line 

segments. This allows the created layout to fit itself as much as 

possible to the corridor boundaries. The  positive edge 

correspondences is defined by counting the number of edge 

pixels which are residing close enough to the boundaries of the 

created layout hypothesis. The compatibility of the created 

layout hypothesis to the orientation map and geometric context 

is calculated pixel by pixel. The created layout hypothesis will 

provide specific orientations to each pixel in the image space, 

and the orientation map and geometric context are also 

conducting the same task. Therefore, by comparing layout 

hypothesis orientation to the orientation provided by the 

combination of orientation map and geometric context, the 

better pixel-wise evaluation of the layout hypothesis can be 

achieved. Since, the combination of orientation map and 

geometric context is the major contribution of this paper; in the 

following sub-sections more information in this regard will be 

presented. 
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4.1 Orientation Map 

Although single images are a reliable data for indoor space 

modeling, automatic recognition of different structures from a 

single image is very challenging. Lee et al., (2009) presented 

the orientation map for evaluation of their generated layout 

hypotheses. The main concept of the orientation map is to 

define which regions in an image have the same orientation. An 

orientation of a region is determined by the direction of the 

normal of that region. If a region belongs to the XY surface, 

then its orientation is Z. 

 

 

Figure 4. Single image, line segments and orientation map. (a) 

Single image. (b) Detected straight line segments, vanishing 

point, and two of vanishing lines. (c) Orientation map; regions 

are colorized according to their orientations. 

 

Orientation map is a map that reveals the local belief of region 

orientations computed from line segments (Figure 4). If a pixel 

is supported by two line segments that have different 

orientations, then this would be a strong indication that the pixel 

orientation is perpendicular to the orientation of two lines. For 

instance in Figure 4(b), pixel (1) can be on a horizontal surface 

because a green line above it and two blue lines to the right and 

left are supporting pixel (1) to be perpendicular to the 

orientation of both lines. Also, pixel (2) seems to be on a 

vertical surface because blue lines above and below and red line 

to the right are supporting it. Also, there is a green line below 

pixel (2), but its support is blocked by the blue line between the 

green line and the pixel. Therefore, the support of a line will 

extend until it hits a line that has the same orientation as the 

normal orientation of the surface it is supporting. It means that a 

line cannot reside on a plane that is actually perpendicular to it. 

4.2 Geometric Context 

Hoiem et al., (2007) labeled an image of an outdoor scene into 

coarse geometric classes which is useful for tasks such as 

navigation, object recognition, and general scene understanding. 

Usually the camera axis is roughly aligned with the ground 

plane, enabling them to reconcile material with perspective. 

They categorized every region in an outdoor image into one of 

three main classes. First, surfaces which are roughly parallel to 

the ground and can potentially support another solid surface. 

Second, solid surfaces those are too steep to support an object. 

Third, all image regions which are corresponding to the open air 

and clouds. 

Theoretically a region in the image could be generated by a 

surface of any orientation. To determine which orientation is 

most probable, Hoiem et al., (2007) used available cues such as 

material, location, texture gradients, shading, and vanishing 

points. It should be noted that some of these cues, are only 

helpful when considered over the appropriate spatial support 

which could be a region in a segmented image. The common 

solution is to build structural knowledge of the image from 

pixels to superpixels. Hoiem et al., (2007) solution was to 

compute multiple segmentations based on simple cues. 

Generally, they sampled a small number of segmentations 

which were representative of the whole distribution. They 

computed the segmentations by grouping superpixels into larger 

continuous segments. Note that different segmentations provide 

various views of the image. To understand which segmentation 

is the best, the likelihood that each segment is good or 

homogeneous must be evaluated. Also, the likelihood of each 

possible label for each segment must be evaluated. Finally, 

combination of all the estimates produced by different 

segmentations would be possible in a probabilistic fashion. Note 

that a segment could be homogeneous if all of the superpixels 

inside that segment have the same label. Hoiem et al., (2007) 

estimated the homogeneity likelihood using all of the cues and 

boosted decision trees. 

 

 

Figure 5. Single image, and the estimated surface labels. 

 

Hedau et al., (2009) used the same idea for labeling surfaces in 

an image, but this time the main focus was on indoor places and 

recovering the spatial layout of cluttered rooms. They tried to 

achieve an overall estimate of where the objects are, in order to 

get a more accurate estimate of the room layout. To estimate the 

room layout surface labels including the objects, they use a 

modified version of Hoiem et al., (2007) surface layout 

algorithm. The image is over-segmented into superpixels, and in 

the next step partitioned into multiple segmentations. Color, 

texture, edge, and vanishing points are the main cues which 

were computed over each segment. A classifier (boosted 

decision tree) is used to estimate the likelihood that each 

segment contains only one type of label and the likelihood of 

each of possible labels. Further, over the segmentations these 

likelihoods would be integrated to provide label confidences for 

each superpixel. Figure 5, Shows an image with its estimated 

surface labels. 

4.3 Orientation Map and Geometric Context Combination 

Zhang et al., (2014) applied both orientation map and geometric 

context on overlapping perspective images. In their paper, they 

expressed that the geometric context can provide better surface 

normal estimation at the bottom of an image, while the 

orientation map works better at the top of an image. Hence, they 

combined the top part of the orientation map image and the 

bottom part of geometric context image, and used the incoming 

result to evaluate the room layout. This drastic variation in the 

performance of orientation map and geometric context from the 

top to the bottom of the images is explainable. Since most of the 

images in their dataset were captured from single rooms, either 

this variation is due to the presence of clutters in most rooms, or 

because their model was trained based on images looking 

slightly downwards. 
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Unlike single rooms which are usually small in size and full of 

clutters, corridors are usually less occupied with clutters and 

have longer length. Therefore, we examined the horizontal view 

angle in the image to evaluate the performance of orientation 

map and geometric context in the corridor related images. 

Figure 6, shows the changes in the accuracy of orientation map 

and geometric context compare to the ground truth training 

images. As it can be seen in this figure, by changing the 

horizontal view angle from left to the right side of the image, 

the orientation map and geometric context performances are 

varying to a considerable extent. The geometric context is 

outperforming the orientation map around both sides of the 

images, while the orientation map is outperforming the 

geometric context around the center of the images. Here, the 

combination of orientation map and geometric context is 

performed by considering their respective performance curves 

with respect to the horizontal view angle. The combination of 

these two looks to be a very simple task, yet orientation map 

and geometric context have little differences in their 

representation. Hence, their representation must be standardized 

before the combination would be possible. 

  

 

Figure 6. Orientation Map and Geometric Context accuracy 

changes by changing the horizontal viewing angle. 

 

On one hand, the orientation map is not numerically expressed, 

and on the other hand the geometric context is expressing the 

likelihood of each possible label for all superpixels in the 

image. As mentioned before, the orientation map is a map that 

reveals the local belief of region orientations in an image. These 

local orientations are assigned to the image regions through 

examining their supporting line segments. Usually the 

orientation map is colorized with four different colors which are 

red, green, blue, and black. The first three colors are 

representing a specific orientation in 3D space which is either 

X, Y, or Z. Normally the black color represents the unsupported 

regions in an image. Since there is a possibility that some 

regions in a specific image could not get complete support from 

line segments, those specific regions would be colorized as 

black and officially would not be assigned with any orientation. 

As mentioned earlier, a specific orientation can be assigned to a 

local region in an image. Moreover, the assigned orientation can 

be expressed numerically. In other words, it is possible to say 

how good the assigned orientation is. To express the orientation 

map numerically for every region in an image, the supporting 

line segments should be in focus. Here, image regions will get a 

value between zero and one for their assigned orientation by 

considering the length of their supporting line segments. In 

other words, when a region is fully supported by the longest 

detected line segments in an image, it will get a value of one for 

its assigned orientation. Also, when a region is supported by the 

smallest detected line segments in an image, it will get the value 

of zero for its assigned orientation. Following the same rational, 

all the regions in the orientation map image will get a value 

between zero and one for their assigned orientation. It should be 

noted that in single images a small line segment might be longer 

than what it looks in real world due to the perspective effect. 

Therefore, we used the vanishing points and project all the 

detected line segments to the image borders to suitably compare 

their lengths. 

After providing different values to the regions orientation in the 

orientation map image, we had to express the surface labels of 

geometric context as orientations. Hence, the geometric context 

has been expressed by the three different orientations which are 

suggested by the orientation map. Finally, it was possible to 

combine the incoming results of the orientation map and 

geometric context with respect to the horizontal view angle in 

the image. Formulas below are showing how these values can 

be used for evaluating an individual layout hypothesis: 

 

 

kx,y = 
𝑎𝑥,𝑦   

𝑎𝑥,𝑦 + 𝑏𝑥,𝑦 
                                                                          (2) 

px,y =  kx,y×OMx,y     

qx,y = (1 – kx,y)×GCx,y     

Ix,y (OM, GC) = max (px,y , qx,y ) 

Som&gc (hi) =1- 
1

𝑛×𝑚
 × ∑ ∑ (|𝐼𝑥,𝑦(𝑂𝑀,  𝐺𝐶) − 𝐽𝑥,𝑦(ℎ𝑖)|)𝑚

𝑦=1
𝑛
𝑥=1   

 
 
where  axy = accuracy of OM at pixel (x,y) 

 bxy = accuracy of GC at pixel (x,y) 

 hi = candidate hypothesis 

 Jx,y (hi) = hypothesis hi orientation value at pixel (x,y) 

 Ix,y (OM, GC) = OM and GC integration at pixel (x,y) 

 OMxy = orientation map outcome at pixel (x,y) 

 GCxy = geometric context outcome at pixel (x,y) 

 Som&gc (hi) = scoring function for OM and GC 
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5. EXPERIMENTS 

As mentioned in the dataset section, ground truth orientation 

images were provided for York University dataset. The 

provided dataset is divided into two categories of training set 

and testing set. Out of 78 images in the dataset, 53 images were 

chosen for testing and the rest of 25 images were chosen for 

training. The training set is used for identifying the accuracy 

curves related to the horizontal viewing angle changes through 

both orientation map and geometric context. Since, the ground 

truth orientation images were provided for each image in the 

dataset, the comparison between the estimated layout for each 

test image and the ground truth layout is accomplished. For 

each test image a quantitative table was produced for better 

examining the incoming results. The incoming tables were used 

for evaluating the overall performance of the generated corridor 

layouts. The average percentage of pixels that have the correct 

orientation for each image in the test set is 71%. Also, 79% of 

the images had less than 20% misclassified pixels. However, 

only 18% of the images had less than 5% misclassified pixels. 

 

 

Figure 7. Scale ratios between the 3D reconstructed ground 

truth layouts and the created layouts for 27 images. 

 

Not only the orientation difference in 2D space of the image is a 

measure for evaluating the estimated corridor layouts, but also 

the 3D reconstructed layout could be considered for evaluation. 

Here, 3D reconstruction of the layouts is performed following 

the proposed approach in Lee et al. (2009). Hence, three 

different parameters (λx , λy , λz) are defined for the layout key 

box in the object space. λx defines the ration between the width 

of the 3D reconstructed layout, and the width of the ground 

truth layout. Same as λx,  λy and λz compare the length and 

height of the 3D reconstructed layout to the length and height of 

the ground truth layout. Figure 7, shows the scale ratios between 

the reconstructed layouts key box and their ground truth layouts 

for 27 images. These images have almost the same scene 

complexity, so that the comparison of their reconstructed 

layouts is possible. As it can be seen in Figure 7, the proposed 

method was more successful in the estimation of scene layout 

width and height (λx and λz are close to 1) over the images. 

However, it has more problems in estimation of the true length 

of the corridors (λy is to some extent not close to 1). This is a 

very critical issue and it has to be scrutinized carefully in the 

future. 

In some images, the floor-wall boundary was partially occluded 

by the objects or human bodies. However, the proposed method 

could successfully recover the corridor layout in many images. 

The proposed method makes use of both detected line segments 

and virtually generated ones to create layout hypotheses. 

However, our experiment shows that virtual rays cannot be 

always helpful, especially when the corridor length is very 

large. In these cases the estimated vanishing points might not 

have sufficient position accuracy. Therefore, the created virtual 

rays will be deviated from the actual layout borders as the ray 

gets closer and closer to the camera. Although the overall 

performance of the proposed method is promising, there are 

some failure cases too.  These failures are mostly because of 

inability to identify orthogonal vanishing points in the image, 

detection of wrong line segments on glass surfaces or waxed 

floors, misaligned boundaries, no lines supporting down the 

corridor or fully occluded floor-wall boundaries. Some of the 

successful and failure cases of the proposed method in creation 

of corridor layouts are shown in Figure 8. Considering Figure 8, 

some of the created layout hypotheses are deviated from the 

ground truth. The most conspicuous problems are: a) wrong 

depth estimation for the key box hypothesis, b) wrong side box 

estimation. Although the algorithm could manage to select the 

correct number of boxes in most of the images, it could not 

filter out inaccurate edges (edges detected on the glass 

surfaces). 

 

 

Figure 8. Examples of both successful and unsuccessful 

estimations for indoor corridor layouts are above. 

 

 

6. CONCLUSION 

The main focus of this paper is on 3D modeling of indoor 

corridors using a single image. 3D modeling of indoor spaces is 

not a trivial task, and it involves with major problems. These 

problems may directly inherit from the modeling approach 

itself, or the adopted data gathering technique. In this paper, the 

proposed indoor corridor layout estimation approach is 

following the Manhattan rule assumption to simplify the 

structure of the indoor corridor layouts. What does make the 

proposed method more conspicuous than the other methods is 

that the incoming estimated layout is not restricted to only 1 

box. We addressed the indoor corridor layout estimation 

problem by hypothesizing-verifying multiple box primitives. 

The proposed method applies the middle-level perceptual 

organization. It relies on both detected line segments and virtual 

rays created by orthogonal vanishing points to estimate indoor 

corridor layouts. The proposed method can easily handle the 

presence of accessory hall ways and occlusions in corridor 
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scenes even the objects were occluding some parts of the floor-

wall or ceiling-wall boundaries. This feature beside the 

compatibility of the estimated layout to the combination of 

orientation map and geometric context are the main advantages 

of the proposed method. The proposed method shows by 

applying a prior knowledge, the 3D layout of an indoor scene 

can be successfully recovered using a single image. A very 

interesting future problem would be the integration of individual 

indoor layouts which is a huge step towards complete indoor 

space modeling. 
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