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ABSTRACT: 

Over 15 million people were officially considered as refugees in the year 2012 and another 28 million as internally displaced 

people (IDPs). Natural disasters, climatic and environmental changes, violent regional conflicts and population growth force people 

to migrate in all parts of this world. This trend is likely to continue in the near future, as political instabilities increase and land 

degradation progresses.  

EO4HumEn aims at developing operational services to support humanitarian operations during crisis situations by means of 

dedicated geo-spatial information products derived from Earth observation and GIS data. The goal is to develop robust, automated 

methods of image analysis routines for population estimation, identification of potential groundwater extraction sites and 

monitoring the environmental impact of refugee/IDP camps.  

This study investigates the combination of satellite SAR data with optical sensors and elevation information for the assessment of 

the environmental conditions around refugee camps. In order to estimate their impact on land degradation, land cover 

classifications are required which target dynamic landscapes. We performed a land use / land cover classification based on a 

random forest algorithm and 39 input prediction rasters based on Landsat 8 data and additional layers generated from radar texture 

and elevation information. The overall accuracy was 92.9 %, while optical data had the highest impact on the final classification. 

By analysing all combinations of the three input datasets we additionally estimated their impact on single classification outcomes 

and land cover classes.  

* Corresponding author. 

1. INTRODUCTION

2013 was the first year in which over 50 million people were 

reported by the United Nations High Commissioner for 

Refugees which were forced to leave their homes (UNHCR, 

20131). The reasons are environmental changes at various 

levels, such as floods, droughts, bad harvests, forest fires or 

natural disasters as well as social and political causes like civil 

wars, terrorism, political instabilities or poverty. These people 

often gather in spontaneously arising camps without any 

central control. When humanitarian operatives arrive at these 

locations they frequently struggle with the organization of the 

camp and lack of information. Most important is information 

about the current population and structure of the camp as well 

as the distribution of ground water in the vicinity of the 

settlement. However, information about the environment and 

the impacts of the refugee camps on the surrounding resources 

have found to be important as well to both the people working 

in the camps (Füreder et al., 2014) and regarding the 

prevention of further migrations (Hagenlocher, 2011).  

Satellite remote sensing can deliver fast and reliable 

information and is especially helpful in regions where field 

measurements and extensive mapping campaigns are not 

possible due to security regions. They can assist planning and 

decision-making by authorities or governments in order to 

achieve a long-term management of land use and resources.  

This study investigates the potential of the combined use of 

optical and synthetic aperture radar (SAR) data as well as 

elevation information for land cover assessments in refugee 

area regions. The following points have to be incorporated 

when talking about humanitarian operations:  

Operationalization: The method should be automatable or at 

least be conducted within a short time in order to provide 

valuable information the case of emergency.  

Transferability: As refugee camps are distributed all over the 

world, the developed method should not target particular 

climates or ecosystems.  

Data availability and processing: We placed interest in the 

utilization of freely available datasets and software.  

Our study therefore addresses the effective integration of 

various data sources and how a work flow must be designed in 

order to fulfill the criteria mentioned above.  

Additionally, we try to estimate the percentage of each input 

data’s contribution to the final result. The benefit of SAR data 

is of peculiar interest as many refugee camps lie within regions 

with difficult climatic conditions such as thick cloud cover and 

haze, which can be penetrated by microwaves (van Zyl & Kim,

2011). 

2. STUDY AREA AND DATA SETS

2.1 Study area 

Our study area lies in the region around the refugee camp 

Domeez in the Kurdish region of Iraq (Figure 1). It is located 

near the city of Dohuk and about 50 kilometers from the Syrian 

and Turkish border in the North and Northwest. The camp was 
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originally designed for 40.000 refugees but in the meanwhile 

hosts a number of over 52.000 persons (UNHCR, 20142).  

Figure 1. Location of the study area 

The climate is characterized as hot-summer Mediterranean 

climate (Csa) according to the Koeppen-Geiger classification 

with a rainy season from October to May and drought between 

June and September. The annual precipitation lies around 600 

mm. Surrounding landscapes are characterized by extensive 

agricultural use, shrub vegetation and open ground with sandy 

soils or bare rocks.  

Due to the increasing impact on the natural resources 

environmental assessments are needed to develop long-term 

strategies of sustainable land use. However, agricultural 

patterns are difficult to detect by optical sensors alone, 

especially the distinction between cropland of different 

intensities and pasture is a problem. 

2.2 Input data and method 

Table 1 summarizes the input data sets used in this study. 

Landsat OLI/TIRS (L8) was launched in early 2013 and offers 

8 bands with a spatial resolution of 30 meters. We did not 

include the panchromatic (15 meters) nor the thermal infrared 

bands (100 meters) in our analyses in order to grant spatial 

consistency. Sentinel-1 (S1) is a C-band radar satellite and was 

launched within the GMES program by the European Space 

Agency (ESA) in April 2014 (Torres et al. 2014). The data was 

purchased as a Level-1 product in Interferometric Wide Swath 

mode (IW) and has a spatial resolution of 10 meters. It was 

calibrated to Sigma Naught (σ0
db) and terrain corrected using a

range-Doppler algorithm (Loew & Mauser 2007). In order to 

preserve the image texture, we didn’t perform any speckle 

removal. As the newly released SRTM 1 ArcSecond DEM by 

NASA (2014) does not yet cover our study areas we used the 

one provided by the CGIAR with a resolution of 90 meters 

(Jarvis, 2008).  

Data Date Description Source 

Landsat 8 19.01.2015 VV and VH USGS 2015 

Sentinel-1 20.01.2015 Level-1B ESA 2015 

SRTM - 3 ArcSecond Jarvis 2008 

Table 1. Data sets 

As the spatial resolution of all three input datasets shows a 

considerable range we needed to find a classification method 

that makes the best use of the different data types. We 

therefore chose a random forest (RF) algorithm which is able 

to treat the input datasets individually searching for patterns 

(Breiman et al., 2001). Random Forests use the principle of 

Classification And Regression Trees (CARTs, Breiman et al. 

1984). A CART tries to segment a predictor space into a 

number of homogenous regions which can then be predicted by 

a generated rule set based on the input data. Random Forests 

generate a multitude of CARTs based on different selections of 

the input data sets which are later summed up to one final 

result. This result can be a map which is represented by pixels 

of the smallest spatial resolution in the training data, in our 

case 10 meters.  

For the prediction of a final result we chose the Land Cover 

Classification System (LCCS) suggested by the FAO (DI 

GREGORIO 2005). It is scale-independent, standardized and 

widely approved for mapping purposes. Table 2 lists the 1ß 

classes used for our study area.  

Land use / Land cover LCCS code 

Built-up areas 5001 

Lake, standing water 8001-5 

River, flowing or shallow water 6006 

Cropland, dense cover 10025 

Cropland, open cover 10049 

Grassland / meadow 10037 

Bare rock 6002-1 

Bare soil 6005 

Sandy coasts and loose sands 8001-1 

Snow and ice 7009 

Table 2. Land use classification scheme 

3. ANALYSIS

3.1 Data preparation 

In order to train a RF classifier successfully, a large feature 

space has to be generated. The initial number of layers is 11, 

consisting of 8 bands from L8, 2 polarizations of S1 and one 

digital elevation model.  

In order to increase the input feature space, textures of the S1 

images were calculated by applying a Grey Level Co-

occurrence matrix (GLCM), which is an acknowledged method 

in order to retrieve second order textures. The following 

parameters were calculated for both polarizations with window 

sizes of 3, 5 and 9 pixels: Contrast, Correlation, Energy and 

Heterogeneity. An example is given in Figure 2. This resulted 

in a total of 24 texture layers. These, however, underlie a 

considerable degree of redundancy and therefore we conducted 

a principal component analysis (PCA), resulting in 8 combined 

texture layers. 

Additionally, a digital terrain analysis was performed on the 

SRTM data calculating the following parameters: Elevation, 

slope, profile curvature, northness and eastness. Again, 

different window sizes (3, 5, 25, and 45 pixels) were applied, 

resulting in a total of 20 terrain parameters.  

In total, 39 input layers were available for the training of the 

RF classifier (8 of Landsat, 10 of Sentinel-1 [2 main images 

and 8 principal components] and 21 of SRTM [1 original layer 

and 20 terrain parameters]). These were then used in subsets to 

estimate the contribution of Landsat, Sentinel-1 and SRTM to 

the final results. In the end, all available layers served as 

inputs for the classification. An example is given in Figure 4.  
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Figure 2. Example for S1 textures:  

Raw VH image, homogeneity size 9, contrast size 5 

Figure 3. Example for SRTM terrain parameters:  

Elevation, curvature size 9, slope size 25, northness size 45 

Figure 4. Workflow of the study 

Figure 4 illustrates the workflow designed for this study. First, 

all input layers get pre-processed and textures and terrain 

parameters are calculated at different scales. Subsequently, the 

RF classifier gets trained with various input subsets in order to 

estimate each dataset’s contribution to the classification. 

Accuracy assessments are performed for each subset. The final 

classification is performed with all 39 prediction layers. 

3.2 Training and Classification 

Training a random forest classifier requires knowledge of 

several parameters which are explained in the following 

(Values in brackets were used for this study):  

Number of trees (500): The number iterations calculating 

rulesets based on input layer subsets.  

Maximum features (6, as a square root of all input layers): The 

number of randomly chosen input layers per iteration. 

Minimum samples per split (2): The minimum number of 

samples required to split an internal node.  

Maximum depth (none): The maximum number of splits for 

each tree. None means, that nodes are expanded until all 

leaves are pure or contain less than given in Minimum 

samples per split.  

Bootstrap (yes): If bootstrap (Efron, 1978) samples are used for 

the building of the trees or not or not. 

The training has been performed by 2200 manually digitized 

sample points (200-300 per class) and another 800 for the 

validation process which will be showed in the following 

chapter.  

3.3 Post-processing 

Random forests classifiers are reported to have difficulties with 

pixel-based methods. In contrast to kriging or other geo-

statistical techniques it does not incorporate direct 

neighborhood or spatial trends in the final result. This leads to 

small patterns of single misclassified pixels throughout the 

image, especially of optically related land use classes. We 

corrected this issue by applying a mode filter with a 5 by 5 

pixel window. It eliminated small misclassifications and 

enhanced the visual interpretability of the output map. This is 

especially desirable when performing a multi-temporal analysis 

looking for land cover changes.    
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4. RESULTS

4.1 Accuracy Assessment 

Including all 39 predictor rasters we achieved an overall 

accuracy of 92.74 % and a kappa accuracy of 91.93 %. Table 3 

shows the result of the accuracy assessment performed on the 

data. It can be seen that all classes reveal very high 

classification accuracies, while dense cropland, bare rocks, 

sandy areas and snow are classified best. Lowest values are 

shown by open cropland and bare soil.  

Class UA PA 

Built-up areas 94.9 %  (0.8) 93.8 %  (3.5) 

Lake 89.9 %  (1.1) 100.0 %  (0.0) 

River 90.2 %  (1.1) 92.5 %  (5.8) 

Cropland, dense 100.0 %  (0.0) 100.0 %  (0.0) 

Cropland, open 78.6 %  (1.5) 78.8 %  (2.1) 

Grassland / meadow 98.7 %  (0.4) 95.0 %  (2.4) 

Bare rock 97.5 %  (0.6) 96.3 %  (1.0) 

Bare soil 80.3 %  (1.4) 82.3 %  (3.0) 

Sandy coasts 98.6 %  (0.4) 88.78%  (10.5) 

Snow and ice 100.0 %  (0.0) 100 %  (0.0) 

Table 3. User’s accuracy (UA) and producer’s  

accuracy (PA) for each class (incl. standard errors) 

Table 4 shows the classification errors of the output map and 

supports the observations already made in Table 3: Open 

cropland and bare soil are misclassified relatively often. A 

confusion matrix revealed that the highest mismatch in 

classifications were between the classes “bare soil” and 

“Cropland, open cover” because they show quite similar 

behavior in the visible spectrum.  

Class Commission Omission 

Built-up areas 5,1 % 6,3 % 

Lake 10,1 % 0,0 % 

River 9,8 % 7,5 % 

Cropland, dense 0,0 % 0,0 % 

Cropland, open 21,3 % 21,3 % 

Grassland / meadow 1,3 % 5,0 % 

Bare rock 2,5 % 3,8 % 

Bare soil 19,8 % 17,7 % 

Sandy coasts 1,4 % 11,3 % 

Snow / ice 0,0 % 0,0 % 

Table 4. Errors of commission and omission 

for each class (Standard error) 

A map of the certainty based on the class probabilities 

generated by the RF is shown in Figure 6 (Appendix). It 

reveals the areas which are most sensitive for modelling, 

namely the edges of snow-covered areas, vegetated ridges and 

grassland partly covered by shrubs. In turn, water areas, dense 

croplands, bare rocks and areas with thick layers of snow have 

high classification certainties.  

4.2 Map output 

A map of the final classification is shown in Figure 5 

(Appendix). It has a spatial resolution of 10 meters and gives a 

good overview over the spatial distribution of land use / land 

cover classes in the study area. Two large cities can be seen: 

Dohuk (500000 inhabitants) in the north and Mosul (nearly 3 

million inhabitants) in the Southwest. Several smaller towns, 

villages and single buildings are scattered throughout the 

whole study area. The pattern of dense and open agricultural 

land as well as grasslands or pasture showed best results in the 

Northwest and Southwest. Large bodies of bare mountain 

planes and ridges extend in the Northeast. As the date if image 

acquisition was in January, some of them are covered in snow.  

The Tigris River reaches from Northwest to Southeast and 

reaches the Mosul dam in the center of the image. It is Iraq’s 

largest dam and was temporally captured by militia of the 

Islamic State during July and August 2014, who threatened to 

blow it up and flood the areas downstream, including the 

megacity Mosul (Malas, 2015).  

4.3 Importance of input datasets 

In order to predict the importance of different datasets on the 

classification process, we performed a 10-fold cross validation 

for every classifier and different combinations of input 

datasets. Table 4 summarizes the training accuracies (TA) of 

the classifier and demonstrates how well the RF matched the 

trained data based on various predictor layers. It can be 

observed that S1 or SRTM data alone are not suitable for a 

classification. Even though they provide more predictor layers 

their TAs are noticeable below the one of the L8-only 

classification. As many classes show a variety of reflectance 

within the L8 spectrum, it unsurprisingly turns out to have the 

largest impact on classification. We can also conclude that the 

number of input layers is not necessarily linked to the training 

accuracy. It furthermore shows that a substantial increase of 

the TA can be achieved by combining complementary datasets.  

Predictors Predictor layers TA 

S1 10 61.3 %  (6,9) 

SRTM 21 64.5 %  (15.8) 

S1+SRTM 31 73.6 % (19,3) 

L8 8 87.2 % (8.3) 

L8+S1 18 87.3 % (6.2) 

L8+SRTM 29 92.0 % (9,5) 

L8+SRTM+S1 39 92.9 % (9,3) 

Table 4. Training accuracies with various inputs 

In order to investigate the suitability of different input datasets 

for the classification of different land use / land cover types we 

also performed accuracy assessments for the different 

combinations of input data. Table 5 lists the classes which 

achieved the highest and lowest accuracy for each possible 

combination of input data. It shows that classes which are 

related to certain topography (Snow, water) can be derived 

from the SRTM quite well, but not local patterns (agriculture). 

In turn, classes which generate a typical backscatter (Built-up 

areas, different types of water) are recognized in SAR data. 

Predictors Class with highest / lowest accuracy 

S1 Built-up area (82.2) / Cropland, open (35.6) 

SRTM Snow / ice (100.0) / Cropland, dense (19,7) 

S1+SRTM Snow / ice (100.0) / Cropland, dense (21,0) 

L8 Sandy coasts (100.0) / Bare soil (60.1) 

L8+S1 Cropland, dense (100.0) / / Bare soil (58.7) 

L8+SRTM Snow / ice (100.0) / Cropland, open (77.1) 

Table 5. User accuracies by input data 
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Figure 5 lists the feature importance of the 15 most valuable 

predictor layers. It determines how often a predictor layer was 

used in the split points of each tree. It is therefore a measure 

for the contribution of each raster layer to the final 

classification. The importance of Landsat 8 data can be clearly 

seen, especially of the near-infrared band. It is furthermore 

demonstrated that the elevation information is the most 

important terrain parameter based on the SRTM and the fewest 

averaged elevation is slightly more valuable than the original 

data. Sentinel-1 seems to plays an underpart in this list. The 

fact that only one predictor layer among the first 15 is from 

Sentinel-1, can be explained by different area proportions of 

the outcome classes: While S1 data was important to 

discriminate flowing and standing water for example, classes 

with larger area proportions in the map (snow, bare soils and 

rocks) are mainly classified by L8.  

Figure 5. Feature importance of the  

15 most important prediction layers. 

5. CONCLUSIONS & OUTLOOK

This study gave an example on the integrated use of datasets 

from different origins for an assessment of environmentally 

relevant land use / land cover classes. These are notably 

helpful in situations where dynamics arise from uncontrollable 

origins. Remote sensing can assist information provision and 

support decisions of planners, politicians or humanitarian 

forces in areas where no field campaigns are possible or 

situations require fast action.  

This study is a first approach to a long-term monitoring of 

natural resources within the area around the refugee camp of 

Domeez. The identified classes are standardized and non-

overlapping so future studies can build on this classification. A 

change analysis could not yet be performed due to the fact that 

Sentinel-1 operates since late 2014. However, multi-temporal 

analyses are planned in order to carry on the approach. 

The random forest algorithm turned out to be a good 

foundation for the study as it incorporates the different spatial 

resolutions of the input datasets. It furthermore selects the 

most valuable information of each predictor for the 

classification which leads to high accuracies and low 

classification errors.  

We found out that SAR data plays a minor role in this study 

but yet increases the accuracy and interpretability of the 

resulting map. The calculation of texture parameters enriched 

the feature space by the factor of 10 and therefore helped to 

train the RF classifier.  
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APPENDIX 

Figure 5. Final classification 

Figure 6. Map certainty 
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