Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-7/W3, 777-782, 2015
http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-7-W3/777/2015/
doi:10.5194/isprsarchives-XL-7-W3-777-2015
© Author(s) 2015. This work is distributed
under the Creative Commons Attribution 3.0 License.
 
29 Apr 2015
Combined use of SAR and optical data for environmental assessments around refugee camps in semiarid landscapes
A. Braun and V. Hochschild Institute for Geography, University of Tübingen, 72070, Tübingen, Germany
Keywords: SAR, refugee camps, landscape capacity, biomass, machine learning Abstract. Over 15 million people were officially considered as refugees in the year 2012 and another 28 million as internally displaced people (IDPs). Natural disasters, climatic and environmental changes, violent regional conflicts and population growth force people to migrate in all parts of this world. This trend is likely to continue in the near future, as political instabilities increase and land degradation progresses.

EO4HumEn aims at developing operational services to support humanitarian operations during crisis situations by means of dedicated geo-spatial information products derived from Earth observation and GIS data. The goal is to develop robust, automated methods of image analysis routines for population estimation, identification of potential groundwater extraction sites and monitoring the environmental impact of refugee/IDP camps.

This study investigates the combination of satellite SAR data with optical sensors and elevation information for the assessment of the environmental conditions around refugee camps. In order to estimate their impact on land degradation, land cover classifications are required which target dynamic landscapes. We performed a land use / land cover classification based on a random forest algorithm and 39 input prediction rasters based on Landsat 8 data and additional layers generated from radar texture and elevation information. The overall accuracy was 92.9 %, while optical data had the highest impact on the final classification. By analysing all combinations of the three input datasets we additionally estimated their impact on single classification outcomes and land cover classes.

Conference paper (PDF, 1335 KB)


Citation: Braun, A. and Hochschild, V.: Combined use of SAR and optical data for environmental assessments around refugee camps in semiarid landscapes, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-7/W3, 777-782, doi:10.5194/isprsarchives-XL-7-W3-777-2015, 2015.

BibTeX EndNote Reference Manager XML