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ABSTRACT: 

One of the problems in dealing with optical images for large territories (more than 10,000 sq. km) is the presence of clouds and 

shadows that result in having missing values in data sets. In this paper, a new approach to classification of multi-temporal optical 

satellite imagery with missing data due to clouds and shadows is proposed. First, self-organizing Kohonen maps (SOMs) are used to 

restore missing pixel values in a time series of satellite imagery. SOMs are trained for each spectral band separately using non-

missing values. Missing values are restored through a special procedure that substitutes input sample's missing components with 

neuron's weight coefficients. After missing data restoration, a supervised classification is performed for multi-temporal satellite 

images. An ensemble of neural networks, in particular multilayer perceptrons (MLPs), is proposed. Ensembling of neural networks is 

done by the technique of average committee, i.e. to calculate the average class probability over classifiers and select the class with 

the highest average posterior probability for the given input sample. The proposed approach is applied for regional scale crop 

classification using multi temporal Landsat-8 images for the JECAM test site in Ukraine in 2013. It is shown that ensemble of MLPs 

provides better performance than a single neural network in terms of overall classification accuracy, kappa coefficient, and 

producer's and user's accuracies for separate classes. The overall accuracy more than 85% is achieved. The obtained classification 

map is also validated through estimated crop areas and comparison to official statistics. 

* Corresponding author.

1. INTRODUCTION

Geographical location and distribution of crops at global, 

national and regional scale is an extremely valuable source of 

information for many applications. Reliable crop maps can be 

used for more accurate agriculture statistics estimation (Gallego 

et al., 2010, 2013, 2014), stratification purposes (Boryan and 

Zhengwei, 2013), better crop yield prediction (Becker-Reshef et 

al., 2010; Kogan et al., 2013a, 2013b).  

Remote sensing images from space have always been an 

obvious and promising source of information for deriving crop 

maps. This is mainly due capabilities to timely acquire images 

and provide repeatable, continuous, human independent 

measurements for large territories. Yet, there are no globally 

available satellite-derived crop specific maps at present 

moment. Only coarse-resolution imagery (at least 250 m spatial 

resolution) has been utilized to derive global cropland extent 

(e.g. GlobCover, MODIS). Nevertheless, even these maps 

provide variable quality and reliability in capturing cropland 

(Fritz et al., 2013). With availability of Landsat-8 and Sentinel-

2 images and their synergic exploitation (Roy et al., 2014), it 

becomes possible to generate crop specific maps at high spatial 

resolution scale for main agriculture regions. 

It should be however noted that most studies on crop mapping 

using high and medium resolution satellite imagery (e.g. 

Landsat-5/7, SPOT, AWiFS) have been carried out at local 

scale (Conrad et al., 2010; Peña-Barragán et al., 2011; Yang et 

al., 2011). One of the exceptions is the creation of the Cropland 

Data Layer (CDL) of the US Department of Agriculture 

(USDA) National Agricultural Statistics Service (NASS) 

(Boryan et al., 2011). The CDL product provides crop maps for 

47 states at 56 m spatial resolution. Another effort to create a 

global cropland product based on Landsat TM and ETM+ is 

performed by Yu et al. (2013a, 2013b). Yu et al. (2013b) 

created a 30 m global land cover product called FROM-GLC 

(Fine Resolution Observation and Monitoring of Global Land 

Cover). Producer’s accuracy (PA) and user’s accuracy (UA) for 

cropland class were 75.25% and 55.62%, respectively, which is 

below the target of 85% for agriculture applications (McNairn 

et al., 2009). 

One of the main issues in utilizing optical imagery is the 

presence of clouds and shadows that introduce missing values. 

At local scale, it is usually possible to acquire cloud-free images 

in the crucial period of vegetation cycle. However, this is not 

the case for large territories. That is why, most of the existing 

studies on large scale crop mapping use high- and medium-

resolution cloud-free optical images coupled with weather-

independent synthetic-aperture radar (SAR) (McNairn et al., 

2009) or use coarse-resolution imagery at high temporal 

resolution (Pittman et al., 2010; Wardlow and Egbert, 2008). In 

order to deal with missing data in optical satellite imagery, a 

number of approaches have been proposed. On of the most 

popular approach is compositing. Yan and Roy (2014) utilize a 

30 m Web Enabled Landsat data (WELD) time series to derive 

cropland and agriculture crop field boundaries. The WELD is 

based on compositing Landsat ETM+ images with cloud cover 

<80% within 150 × 150 km tiles on weekly, monthly, seasonal, 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-7/W3, 2015 
36th International Symposium on Remote Sensing of Environment, 11–15 May 2015, Berlin, Germany

This contribution has been peer-reviewed.  
doi:10.5194/isprsarchives-XL-7-W3-45-2015

 
45



and annual basis. However, missing value can still happen in 

composite products. Another popular approach is related to fill 

in missing data with different techniques such as multi-spectral 

and multi-temporal. Roy et al. (2014) utilize course resolution 

MODIS data for filling gaps and predicting Landsat data. Yu et 

al. (2013b) improve the 30 m FROM-GLC global land cover 

map based on Landsat TM and ETM+ imagery by adding coarse 

resolution MODIS imagery. It allows them to increase overall 

accuracy from 64.89% to 67.08%. Chen et al. (2011) propose a 

neighbourhood similar pixel interpolator (NSPI) for filling gaps 

in Landsat ETM+ SLC-off images. Latif et al. (2008) propose 

self-organizing Kohonen maps (SOMs) for reconstructing 

missing values in a time-series of low-resolution satellite 

imagery. It should be however noted that only few studies on 

filling in techniques assessed their efficiency on generating 

dedicated products, for example land cover maps (Chen et al., 

2011). Moré et al. (2006) propose a hybrid classifier to dealing 

with missing data in a time-series of Landsat imagery. First, 

unsupervised classification for different combinations of input 

data is performed based on clustering algorithm IsoMM. Then, 

an algorithm called ClsMix is run to assign every spectral class 

to a thematic class through training areas defined by the user. 

The proposed approach achieves overall accuracy of 88.6% 

comparing to 67.2% obtained by the maximum likelihood (ML) 

classifier. 

No previous studies used restored missing data from high- and 

medium resolution satellite imagery (such as Landsat-8) to 

provide crop classification and mapping for large areas. In this 

paper, a new approach to classification of multi-temporal 

Landsat-8 imagery with missing data due to clouds and shadows 

is presented. The approach combines different neural networks 

(NNs) architectures to restore missing values in a time-series of 

satellite imagery and provide supervised classification for crop 

discrimination. Results are presented for the Joint Experiment 

of Crop Assessment and Monitoring (JECAM) test site in 

Ukraine with the area of more than 28,000 km2 (Gallego et al., 

2014; Shelestov et al., 2013). The resulting classification map 

from Landsat-8 imagery is produced, and derived crop area 

estimates are compared to official statistics. To our best 

knowledge, the obtained crop map is one of the first ones 

produced at regional scale using new Landsat-8 images. 

2. METHODOLOGY

2.1 Restoration of missing data in satellite images 

SOM is a type of artificial neural network that is trained using 

unsupervised learning to produce a discretised representation of 

the input space of the training samples, called a map (Kohonen, 

1995). The map seeks to preserve the topological properties of 

the input space. SOM is formed of the neurons located on a 

regular, usually one- or two-dimensional grid. Neurons compete 

with each other in order to pass to the “excited” state. The 

output of the map is, so called, neuron-winner or best-matching 

unit (BMU) whose weight vector has the greatest similarity with 

the input sample x 

l
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where i(x) = SOM output, i.e. the number of BMU 

x = an input vector 

L = a number of neurons in the output grid 

wl is a vector of weight coefficients for neuron l 

•  means metric (e.g. Euclidean) 

It should be noted that dimension of weight vectors wl is 

identical to dimension of the input vectors x. Figure 1 shows a 

general procedure for restoration of missing values in a time-

series of data sets. The reconstruction of satellite images is 

performed for each spectral band separately, i.e. a separate 

SOM is trained for each spectral band. Pixels that have no 

missing values in the time-series are selected for training. 

Selecting the number of training pixels represents a trade-off, in 

particular increasing the number of training samples will lead to 

the increased time of SOM training while increasing the quality 

of restoration. Also, training data sets should be selected 

automatically. As such, we propose to select training samples 

on a regular grid of pixels. Therefore, the SOM seeks to project 

a large number of non-missing data to the subspace vectors in 

the map. 

Figure 1. A procedure to restore missing values in input data 

using SOM 

Restoration of missing values is performed in the following way 

(Figure 1). The multi-temporal pixel values with missing 

components are input to the SOM. A neuron-winner in the 

SOM is selected following Eq. (1). It is worth noting, however, 

that missing values are omitted from metric estimation when 

selecting BMU, i.e. only components with valid values in the 

input vector are used. When the BMU is selected, missing 

values are substituted by corresponding components of the 

BMU weight values. Detailed description of the algorithm and 

its performance evaluation is described in (Skakun and Basarab, 

2014). 

2.2 Committee of neural networks for image classification 

Support vector machine (SVM), decision tree (DT) and RF 

classifiers have been probably the most popular ones for remote 

sensing image classification in the past years (Boryan et al., 

2011; McNairn et al., 2009; Pittman et al., 2010; Shao and 

Lunetta, 2012; Wardlow and Egbert, 2008). Many papers report 

better performance of SVM, DT and RF comparing to other 

techniques, including MLP (McNairn et al., 2009). However, 

some other studies show MLP to outperform SVM and DT 

(Gallego et al., 2012, 2014). Though the MLP training phase 

might be resource and time consuming (but this is becoming 

less problematic with the use of high-performance computations 

(Kravchenko et al., 2008; Kussul et al., 2009, 2010a, 2010b, 

2012; Shelestov et al., 2006; Shelestov and Kussul, 2008)), and 

might require experience from the user, it has several 

advantages over SVM and DT. In particular, MLP is fast at 

processing new data which can be critical to the processing of 

large volumes of satellite data, and can produce probabilistic 

outputs which can be used for indicating reliability of the map. 

In many cases, in our opinion, not a full potential of MLP has 

been explored. In particular, cost function for MLP training is 

usually considered square (e.g. root mean square error – RMSE) 

in remote sensing literature while it had been shown that cross-
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entropy (CE) error function provides better performance in 

terms of speed of training and classification accuracy (Bishop, 

2006; Meier et al., 2011; Simard et al. 2003). Another potential 

is to explore a committee of neural networks since the 

committee of classifiers tends to outperform the single classifier 

(Zhang and Xie, 2014). 

Therefore, an MLP classifier is used as a basic one in this study 

for classification of restored multi-temporal satellite imagery. 

The MLP classifier has a hyperbolic tangent activation function 

for neurons in the hidden layer and logistic activation function 

in the output layer. The CE error function is defined using the 

following equation (Bishop, 2006) 

∑∑
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where E(w) = CE error function that depends on the 

neurons’ weight coefficients w 

T = set of vectors of target outputs in the training set 

composed of N samples 

K = number of classes 

tnk and ynk = target and MLP outputs, respectively 

In the target output for class k, all components of vector tn are 

set to 0, except for the k-th component which is set to 1. The CE 

error E(w) is minimized by means of the scaled conjugate 

gradient algorithm by varying weight coefficients w (Bishop, 

2006). 

A committee of MLPs is used to increase performance of 

individual classifiers. Two approaches to forming the committee 

are evaluated in this study. Both these approaches are 

modifications of the bagging technique (Bishop, 2006). Within 

the first approach, committee is formed using MLPs trained on 

different data sets. Within the second approach, committee is 

formed using MLPs with different parameters trained on the 

same training data. These approaches are quite simple, non-

computation intensive and proved to be efficient for other 

applications (Meier et al., 2011). 

Outputs from different MLPs are integrated using the technique 

of average committee (Meier et al., 2011). Under this technique 

the average class probability over classifiers is calculated, and 

the class with the highest average posterior probability for the 

given input sample is selected (Figure 3). The following 

equation formalizes this procedure 
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where k* = class to which the committee of classifiers 

assigns the input sample 
e

i
p  = resulting posterior probability of the committee 

l

i
p  = posterior probability of each MLP 

L = number of classifiers in the committee, and K is 

the number of classes 

The average committee procedure has advantage over majority 

voting technique in two aspects: (i) it gives probabilistic output 

which can be used as an indicator of reliability for mapping 

particular pixel or area; (ii) it does not have ambiguity when 

two or more classes give the same number of “votes”. 

Classification of satellite images is performed on a per-pixel 

basis. Though, it was previously reported that per-field 

classification often outperforms per-pixel classification, it 

requires availability of accurate field boundaries. Unfortunately, 

field boundaries for most regions of Ukraine are not available at 

present moment, and therefore, it complicates the use of per-

field classification in the operational context (McNairn et al., 

2009). 

3. STUDY AREA DESCRIPTION

The proposed methodology is evaluated for the JECAM test site 

in Ukraine. The JECAM test site in Ukraine was established in 

2011 and covers the administrative region of Kyiv oblast with 

the geographic area of 28,100 km2 and almost 1.0 M ha of 

cropland. Northern part of the region is dominated by forests 

and grasslands, while central and southern parts are agriculture 

intensive areas. Land cover classes are quite heterogeneous 

including croplands, forests, grassland, rivers, lakes and 

wetlands. The climate in the region is humid continental with 

approximately 709 mm of annual precipitations. Landscape is 

mostly flat terrain with slopes ranging from 0% to 2%; near 

10% of the territory is hilly with slopes about 2-5%. The crop 

calendar is September-July for winter crops, and April-October 

for spring and summer crops. Major crop types include maize 

(25.1% of total cropland area in 2013), winter wheat (16.1%), 

soybeans (12.6%), vegetables (10.3%), sunflower (9.3%), 

spring barley (6.8%), winter rapeseed (4.0%), and sugar beet 

(1.3%). A remark should be made considering vegetables. In the 

region, vegetables are mainly (approximately 96%) produced by 

small farmers and people living in villages for self-consumption 

purposes (so called family gardens (Gallego et al., 2014)). The 

fields are mainly located next to the houses and, as a rule, are 

very small in size (less than 0.1 ha). This requires special 

techniques and the use of very high-resolution satellite data that 

were not available for the test site at large scale. Therefore, 

vegetables are not considered among major crops types within 

this study. Due to relatively large number of major crops and 

other factors there is no a typical simple crop rotation scheme in 

this region. Most farmers use different crop rotations depending 

on specialization. Fields in the region are quite large (except 

family gardens) with size generally ranging up to 250 ha. 

4. MATERIALS DESCRIPTION

4.1 Ground measurements 

Ground surveys were conducted in June 2013 to collect data on 

crop types and other land cover classes. European Land Use and 

Cover Area frame Survey (LUCAS) nomenclature is used in 

this study as a basis for land cover / land use types. In total, 386 

polygons are collected covering the area of 22,700 ha (Table 1). 

Data are collected along the roads using mobile devices with 

built-in GPS. 

4.2 Landsat-8 satellite imagery 

Remote sensing images acquired by Operational Land Imager 

(OLI) sensor aboard Landsat-8 satellite are used for crop 

mapping over the study region. Landsat-8/OLI acquires images 

in eight spectral bands (bands 1-7, 9) at 30 m spatial resolution 

and in panchromatic band 8 at 15 m resolution (Roy et al., 

2014). Three scenes with path/row coordinates 181/24, 181/25 

and 181/26 cover the test site region. Dates of acquisition are 

April 16, May 02, May 18, June 19, July 05, and August 06. 
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Polygons Area 

N Class No. % ha % 

1 Artificial 6 1.6 23.0 0.1 

2 Winter wheat 51 13.2 3960.8 17.4 

3 Winter rapeseed 12 3.1 937.3 4.1 

4 Spring crops 9 2.3 455.9 2.0 

5 Maize 87 22.5 7253.3 31.9 

6 Sugar beet 8 2.1 632.5 2.8 

7 Sunflower 30 7.8 2549.0 11.2 

8 Soybeans 60 15.5 3252.3 14.3 

9 Other cereals 32 8.3 1364.0 6.0 

10 Forest 17 4.4 1014.3 4.5 

11 Grassland 48 12.4 747.5 3.3 

12 Bare land 10 2.6 67.2 0.3 

13 Water 16 4.1 448.3 2.0 

Total 386 100 22705.3 100 

Table 1. Number of polygons and total area of crops and land 

cover types collected during the ground survey 

Figure 2. Example of restoration of missing data in Landsat-8 

images acquired on the 5th of July 2013. Original image with 

identified clouds and shadows as missing data is show in (a). 

Result of restoration is shown in (b). For both images true 

colour composite of bands 4-3-2 is shown. SR reflectance 

values are scaled from 0 to 0.15 

The following pre-processing steps are applied for all Landsat-8 

images: (1). Conversion of digital numbers (DNs) values to the 

top-of-atmosphere (TOA) reflectance values using conversion 

coefficients in the metadata file (Roy et al., 2014). (2). 

Conversion from the TOA reflectance to the surface reflectance 

(SR) using the Simplified Model for Atmospheric Correction 

(SMAC) (Rahman and Dedieu, 1994). The source code for the 

model is acquired from http://www.cesbio.ups-

tlse.fr/multitemp/?p=2956. Parameters of the atmosphere to run 

the model (in particular, aerosol optical depth) are acquired 

from the Aeronet network’s station in Kyiv (geographic 

coordinates +50.374N and +30.497E). (3). Detection of clouds 

and shadows using Fmask algorithm proposed by Zhu and 

Woodcock (2012). 

4.3 Preparation of satellite images for classification 

Multi-temporal Landsat-8 images acquired in bands 2 through 7 

are reconstructed using SOMs and used for classification of 

satellite imagery. Bands 1 and 9 are not used due to the strong 

atmospheric influence. Panchromatic band and thermal bands 

by Thermal Infrared Sensor (TIRS) are not utilized as well. 

Multi-temporal SR values in six spectral bands form a feature 

vector that is input to the classifier. Therefore, a total amount of 

36 variables have been introduced in the classification. All 

variables are normalized to have mean 0 and standard deviation 

1. Feature vectors of SR values are derived for fields collected

during ground survey. All surveyed fields are randomly divided 

into training set (50%) to train the classifier and testing set 

(50%) for testing purposes. Fields are selected in such a way so 

there is no overlap between training and testing sets. All 

classification results, in particular overall accuracy (OA), kappa 

coefficient, user’s (UA) and producer’s (PA) accuracies are 

reported for testing set. The input features are classified into 

one of the 13 classes (Table 1). 

5. RESULTS

5.1 Restoration of missing values in time-series of Landsat-

8 images 

The results of restoration show that relative root mean square 

error (RRMSE) are dependent on the number of missing data, 

and increase when the number of missing values increases 

(Skakun and Basarab, 2014). RRMSE values are dependant on 

the Landsat-8 spectral bands with minimum value being for 

Band 5 (11.4%) and maximum value being for Band 4 (19.7%). 

Quality of reconstruction of vegetated areas is higher than for 

artificial surface. The example of missing data restoration for 

images acquired on the 5th of July 2013 is shown in Figure 2. 

5.2 Landsat-8 images classification 

Three different classification schemes are compared in the 

study. The first scheme (Scheme 1) utilizes a single MLP 

classifier that is trained on all training data. For this, the number 

of hidden neurons in MLP is varied (from 20 to 80) in order to 

select the MLP classifier that yields the largest OA. The second 

scheme (Scheme 2) utilizes a committee of MLPs that are 

trained on different training data sets that are randomly divided 

into five disjoint subsets. For each subset, a number of MLPs 

are trained and the best MLP in terms of OA is selected into the 

committee. Therefore, the committee is composed of five MLP 

classifiers. The third scheme (Scheme 3) utilizes a committee of 

seven MLPs that are trained on all training data and have 

different number of hidden neurons, in particular 20, 30, 40, 50, 

60, 70, and 80. The obtained classification metrics, in particular 

OA, Kappa, PA and UA, are summarized in Table 2. The use of 

multi-temporal Landsat-8 imagery and a committee of MLP 

classifiers allow us to achieve overall accuracy of slightly over 

85% which is considered as target accuracy for agriculture 

applications (McNairn et al., 2009). The use of committee of 

MLP classifiers comparing to the single MLP classifier is 

essential, and it is statistically confirmed by using z-test (Foody, 

2004). In particular, z value is equal to 5.36 when comparing 

Scheme 3 to Scheme 1 which is larger than the threshold value 

of |z|>1.96. It means that hypothesis of no significant difference 

between two classifiers would be rejected at the widely used 5 

percent level of significance. 
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Scheme 1: Best 

single MLP 

Scheme 2: 

Committee of MLPs 

Scheme 3: Committee 

of MLPs 

OA, % 84.60 85.11 85.32 

Kappa 0.8144 0.8211 0.8235 

PA, % UA, % PA, % UA, % PA, % UA, % 

1 Artificial 74.5 93.2 100.0 97.9 100.0 97.9 

2 Winter wheat 95.6 90.6 96.0 91.9 95.7 91.8 

3 Winter rapeseed 94.5 96.1 93.3 99.2 93.5 99.4 

4 Spring crops 12.1 15.3 46.2 38.8 40.6 34.6 

5 Maize 92.6 86.6 90.3 86.8 90.5 86.8 

6 Sugar beet 83.0 93.7 94.4 88.0 94.9 89.6 

7 Sunflower 86.1 82.1 83.6 84.2 84.1 85.4 

8 Soybeans 66.6 77.1 68.8 76.6 69.7 77.1 

9 Other cereals 71.8 76.9 70.2 78.1 70.9 78.0 

10 Forest 96.7 91.9 96.9 91.9 96.9 92.9 

11 Grassland 84.2 88.9 90.7 88.0 91.0 89.0 

12 Bare land 86.7 88.8 86.7 98.5 86.7 99.0 

13 Water 99.3 98.1 100.0 98.0 100.0 98.1 

Table 2. Classification results of using different neural network approaches 

Figure 3. Final map obtained by classifying multi-temporal Landsat-8 imagery using a committee of MLP classifiers 

Target accuracy of 85% (in terms of both producer’s and user’s 

accuracies) is also achieved for the following agriculture 

classes: 

- winter wheat (class 2, PA=95.6%, UA=90.6%): main 

confusion with other cereals (class 9) and spring crops 

(class 4). 

- winter rapeseed (class 3, PA=93.5, UA=99.4%): main 

confusion with other cereals (class 9). 
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- maize (class 5, PA=90.5%, UA=86.8%): main 

confusion with soybeans (class 8); in particular almost 

88% of commission error and 75% of omission error 

for maize is due to confusion with soybeans. 

- sugar beet (class 6, PA=94.9%, UA=89.6%): main 

confusion with soybeans (class 8) and maize (class 5); 

in particular, almost 55% of commission error is due to 

confusion with maize, and almost 95% of omission 

error is due to confusion with soybeans. 

For the following agriculture classes the accuracy of 85% is not 

obtained: 

- spring crops (class 4, PA=40.6%, UA=34.6%): 

classification using available set of satellite imagery 

fail to produce reasonable performance for spring 

crops. The main confusion of this class is with winter 

wheat (class 2) and other cereals (class 9). The reasons 

for this are as follows. When collecting ground data, it 

was impossible to discriminate winter crops from 

spring crops in the fields. Therefore, all wheat samples 

are assigned winter wheat class (since proportion of 

spring wheat is small), and all barley samples are 

assigned spring crops class (since proportion of winter 

barley is small). Unfortunately, reliable satellite data 

(including coarse resolution MODIS) for the autumn 

period of 2012 are not available due to strong cloud 

contamination. Confusion with other cereals can be 

explained by almost identical vegetation cycle of 

spring barley and other cereals produced in the region, 

namely with rye and oats. Combining spring crops and 

other cereals classes would improve accuracies for 

both these classes to PA=79.93% and UA=83.53%. 

- sunflower (class 7, PA=84.1%, UA=85.4%): main 

confusion with soybeans; in particular, almost 74% of 

commission error and 41% of omission error is due to 

confusion with soybeans. 

- soybeans (class 8, PA=69.7%, UA=77.1%): this is the 

least discriminated summer crop with main confusion 

with maize; in particular, almost 61% of commission 

error and 71% of omission error is due to confusion 

with maize. 

All non-agriculture classes including forest and grassland yield 

PA and UA of more than 85%. The final classification map is 

shown in Figure 3. 

5.3 Comparison to official statistics 

The derived crop map over the Kyiv oblast is used to estimate 

crop statistics and compare it to the official one. The official 

statistics on crops for the region was released only in January 

2014, while the crop map was produced using the remote 

sensing images acquired until the 6th of August 2013. Therefore, 

within operational context, the map could be potentially 

produced within August-September 2013 which is 4-5 months 

in advance of the official statistics report. 

A simple pixel counting procedure is applied for crop area 

estimation. Pixel counting is known to be biased (Gallego et al., 

2010), and the bias can be approximated as 

Bias = Commission error – omission error. (4) 

Using commission and omission errors from the confusion 

matrix, this bias is used to correct pixel counting estimates and 

provide final crop area values. The results are given in Table 3. 

In general, there is a good correspondence between satellite 

derived crop area estimates and official statistics except winter 

rapeseed and sugar beet. The former crop class is overestimated 

+28% while the latter crop is underestimated -28%. 

Class 

no. 

Class Crop area: 

official 

statistics, x 

1000, ha 

Crop area: 

Landsat-8 

derived, x 

1000, ha 

Relative 

error, % 

2 

Winter 

wheat 187.3 184.5 -1.5 

3 

Winter 

rapeseed 46.7 59.9 28.3 

5 Maize 291.7 342.4 17.4 

6 

Sugar 

beet 15.5 11.2 -27.9 

7 Sunflower 108.2 117.6 8.7 

8 Soybeans 145.9 168.5 15.5 

Table 3. Comparison of official statistics and crop area 

estimates derived from Landsat-8 imagery for Kyiv region 

5.4 Discussion of results 

The results achieved in this study show the efficiency of 

different neural networks architectures for classification of 

multi-temporal satellite imagery with missing data. The use of 

SOMs makes possible to restore missing data by training the 

neural network in an unsupervised fashion. Only data with all 

valid components are used for SOMs training. In such a way, 

the neural network projects data from training set into the 

subspace of neurons weight coefficients which are further used 

for restoration of missing values. The restoration is not perfect 

and introduces the error. It is found that the error is dependent 

on the spectral band: in particular, the relative error of 

restoration is 11.4% to 19.7% for Landsat-8 bands 2-7. 

However, the error shows small variations when varying 

training data size for SOM training. It should be also noted that 

data for SOM training and SOM size are selected automatically. 

It is very important when processing large volumes of data, and 

is one of the advantages of the proposed approach. 

After all missing values are restored a supervised classification 

procedure is performed. For this, a committee of MLP 

classifiers is used. Two approaches to compose a committee are 

evaluated with both showing better performance over a single 

MLP classifier. The use of MLPs committee allows us to 

achieve overall accuracy of 85.32% and Kappa coefficient of 

0.8235 when classifying multi-temporal Landsat-8 images over 

the JECAM test site in Ukraine. Accuracy of 85% is usually 

considered as a target for space-based agriculture applications 

(McNairn et al., 2009). Analysis of user’s and producer’s 

accuracies shows that some crop-specific classes achieve the 

target accuracy (such as winter wheat, winter rapeseed, maize 

and sugar beet) while others do not (spring crops, sunflower and 

soybeans). Spring crops class (mostly, barley) is the least 

discriminated class due to difficulties in discriminating winter 

and spring classes in the field during summer ground surveys, 

and confusion with other spring and summer cereals such as rye 

and oats. If spring crops and other cereals classes are combined 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-7/W3, 2015 
36th International Symposium on Remote Sensing of Environment, 11–15 May 2015, Berlin, Germany

This contribution has been peer-reviewed.  
doi:10.5194/isprsarchives-XL-7-W3-45-2015

 
50



together, accuracies considerably increase: from 40.6% to 

79.93% of PA and from 34.6% to 83.53% of UA. Winter crops 

(wheat and rapeseed) yield very good performance with PA and 

UA both more that 91%. There is a mixed performance for 

summer crops. In particular, maize and sugar beet exceeded the 

threshold of 85% while sunflower (almost exceeded with 84.1% 

of PA and 85.4% of UA) and soybeans did not. Soybeans class 

is least discriminated summer crop far below the 85% threshold: 

PA=69.7%, UA=77.1%. Main confusion of soybeans is with 

other summer crops, namely maize, sunflower, and sugar beet. 

This is due to similar vegetation cycle of summer crops which 

requires much better temporal resolution. Another way to 

improve discrimination of summer crops is to utilize SAR 

imagery. These activities are ongoing and will be reported in 

future papers. 

The derived crop map is used for crop area estimation for the 

Kyiv oblast. The estimates are compared to the official statistics 

and show good correspondence. Relative error for major crops 

is within ±28%. It should be emphasised that the latest image 

that is used to produce a crop map was acquired on the 6th of 

August 2013. Therefore, classification could be performed and 

crop map could be made available within August-September of 

the same vegetation year that is extremely important within 

operational context. For comparison, preliminary official 

statistics was only available in January 2014. 

6. CONCLUSIONS

Knowledge on the area and distribution of crops is extremely 

important for many applications. To enable crop mapping at 

large scale, remote sensing images from space present the only 

source of reliable, continuous and human independent 

information. Optical images are contaminated by the presence 

of clouds and shadows that introduce missing values in the 

datasets. These missing values need to be properly processed to 

enable further classification of satellite imagery. This paper 

provides an integrated use of unsupervised and supervised 

neural networks in order to classify multi-temporal optical 

satellite images with the presence of missing data. First, SOMs 

are trained on available datasets with non-missing components, 

and are used to restore missing values. This restoration 

technique is universal, computationally effective and could be 

used for multiple scenes and satellite sensors. In the case of 

Landsat-8 multi-temporal images that are used in this study, it is 

possible to restore spectral bands with up to 19.7% relative 

RMSE error. Afterwards, a supervised classification is 

performed with the use of committee of MLP classifiers. This 

approach is applied for the JECAM test site in Ukraine for large 

area crop mapping (more than 28,000 km2). The committee of 

MLPs outperforms the best single MLP classifier and reaches a 

threshold of 85% of overall classification accuracy 

(OA=85.32% and Kappa 0.8235). For the following agriculture 

classes an 85% threshold of producer’s and user’s accuracies is 

achieved: winter wheat, winter rapeseed, maize, and sugar beet. 

Such crops as sunflower, soybeans, and spring crops show 

worse performance. The resulting crop map is used to derive 

crop area estimates that are compared to the official statistics. 

Results show good correspondence with 28% of relative error. 
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