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ABSTRACT 

Every day new tools and algorithms for automated image processing and 3D reconstruction purposes become available, giving the 

possibility to process large networks of unoriented and markerless images, delivering sparse 3D point clouds at reasonable 

processing time. In this paper we evaluate some feature-based methods used to automatically extract the tie points necessary for 

calibration and orientation procedures, in order to better understand their performances for 3D reconstruction purposes. The 

performed tests - based on the analysis of the SIFT algorithm and its most used variants - processed some datasets and analysed 

various interesting parameters and outcomes (e.g. number of oriented cameras, average rays per 3D points, average intersection 

angles per 3D points, theoretical precision of the computed 3D object coordinates, etc.). 

 

 

1. INTRODUCTION 

Automated image processing for 3D reconstruction purposes is 

flooding every day with new tools and algorithms. Camera 

calibration, image orientation and dense matching methods are 

more and more hidden behind one-click button software and so 

affordable to non-expert users. In particular, automated image 

orientation approaches, built on feature-based methods for tie 

point extraction and pushed by the great developments in the 

Computer Vision community, are nowadays able to process 

large networks of unoriented and markerless images delivering 

sparse 3D reconstruction at reasonable processing time (Snavely 

et al., 2008; Agarwal et al., 2009; Frahm et al., 2010; Wu, 

2013). This has led to the well know Structure from Motion 

(SfM) concept (firstly introduced by Ullman, 1979), i.e. the 

automated and simultaneous determination of camera 

parameters together with scene’s geometry. SfM has been 

adopted also in the photogrammetric community (Barazzetti et 

al., 2010; Del Pizzo & Troisi, 2011; Deseilligny & Clery, 2011; 

Roncella et al, 2011) although camera calibration and image 

orientation are normally kept separate unless the image network 

is acceptable for self-calibration (Barazzetti et al., 2011).  In all 

automated approaches, image correspondences are normally 

extracted using feature-based methods and then the unknown 

camera parameters and 3D object coordinates are determined 

using a bundle adjustment method. Commercial and open-

source solution exist with performances sometimes unclear and 

often low reliability and repeatability (Remondino et al., 2012). 

Moreover a deep and metric evaluation of the different (hidden) 

steps is still missing. 

In this work we evaluate some feature-based methods used to 

automatically extract the tie points necessary for calibration / 

orientation procedures. An automated calibration / orientation 

procedure is normally based on the following steps: feature 

detection, feature description, detector comparison, outlier 

removal, tie point transfer throughout the images, bundle 

adjustment and determination of unknown parameters. The 

detection and description steps are salient stages for the 

performances of an automated procedure. Recent investigations 

and comparisons of detectors and descriptors were presented in 

(Burghouts & Geusebroek, 2009; Juan & Gwon, 2009; Aanæs 

et al., 2012; Heinly et al., 2012; Oyallon & Rabin, 2013; Wu et 

al., 2013) mainly on indoor datasets, planar surfaces, low-

resolution images and without geometric analyses with respect 

to 3D object coordinates. Therefore an in-depth analysis and 

comparisons in terms of photogrammetric parameters is needed.  

In this contribution the Scale-invariant Feature Transform 

(SIFT) algorithm (Lowe, 2004) and its most interested variants 

are considered, paying great attention to the description phase 

of each method. The considered feature-based methods are 

(Section 2): SIFT (in the VLFeat implementation), SIFT-GPU, 

ASIFT, ColSIFT, DAISY, LDAHash, SGLOH and SURF. The 

employed feature-based methods are proper implementations 

adapted from the open-source domain. For the presented 

evaluation, different image networks are used (Section 3 and 

Fig. 1). Evaluation results and critical comments are reported. 

 

2. FEATURE-BASED METHODS: DETECTORS & 

DESCRIPTORS 

Feature identification and matching is at the base of many 

automated photogrammetric and computer vision problems and 

applications like 3D reconstruction, dense point cloud 

generation, object recognition or tracking, etc. 

A feature detector (or extractor) is an algorithm that takes an 

image as input and delivers a set of local features (or regions) 

while a descriptor computes on each extracted region a specific 

representation of the extraction. Good image features should be 

independent from any geometric transformation applied to the 

image, they should be robust to illumination changes and they 

should have a low feature dimension in order to perform a quick 

matching.  

Interest point or corner detectors (MORAVEC: Moravec, 1979; 

FOERSTNER: Foerstner & Guelch, 1987; HARRIS: Harris & 

Stephens, 1988; SUSAN: Smith & Brady, 1997; AGAST: Mair 

et al., 2010; FAST: Rosten et al., 2010; etc.) are very common 

but not really suitable for fully automated procedures and wide 

baselines matching as they lack of repeatability and orientation 

information (Schmid et al., 2000; Rodehorst & Koschan, 2006). 

Therefore scale- and affine-invariant region (or blob) detectors 

were developed (Fraundorfer & Bischof, 2004), contrary to 

points and corners which are less distinctive under different 
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viewpoints (Lindeberg, 1998; Kadir et al., 2004; Mikolajczyk & 

Schmid, 2004; Tuytelaars & Van Gool, 2004; Klein & Murray, 

2008). The detection is usually performed with a Difference of 

Gaussian (DoG) or Histograms of Gradients (HoG) or Hessian 

methods. 

Once points and regions (invariant to a class of transformations) 

are detected, (invariant) descriptors are computed to 

characterize the feature. The descriptors are a variable number 

of elements (from 64 to 512) computed with histogram of 

gradient location and orientation (Lowe, 2004), moment 

invariant (Van Gool et al., 1996), linear filters (Schaffalitzky & 

Zissermann, 2002), PCA (Mikolajczyk, K. & Schmid, C., 

2005), intensity comparison and binary encoding (Calonder et 

al., 2010; Leutenegger et al., 2011), etc. Descriptors have 

proved to successfully allow (or simplify) complex operations 

like wide baseline matching, robot localization, object 

recognition, etc.  

In the detection phase, in order to produce translation and scale 

invariant descriptors, structures must be unambiguously located, 

both in scale and position. This excludes image edges and 

corners since they are translation-, view- and scale-variant 

features. Therefore image blobs located on flat areas are the 

most suitable structures although not so precisely located as 

interest points and corners (Remondino, 2006). 

Nowadays the most popular and used operator is the SIFT 

method. SIFT has good stability and invariance and it detects 

local keypoints with a large amount of information using the 

DoG method. As reported in literature (Remondino et al., 2012; 

Zhao et al.,  2012; Apollonio et al. 2013; Morel & Yu, 2009), 

the typical failure cases of the SIFT algorithm are changes in 

the illumination conditions, reflecting surfaces (e.g. cars or 

windows), object / scene with strong 3D aspect, highly repeated 

structures in the scene and very different viewing angle between 

the images. In order to overcome these failures but also to 

quickly derive compact descriptor representations, many 

variants and alternatives of the SIFT algorithms were developed 

in the last years (Ke & Sukthankar, 2004; Brown et al., 2005; 

Bay et al., 2008; Morel & Yu, 2009; Bellavia et al., 2010; Tola 

et al., 2010; Vedaldi & Fulkerson, 2010; Rublee et al., 2011; 

Yeo et al., 2011; Strecha et al., 2012; Wu, 2014) and nowadays 

used in many open-source and commercial solutions which 

offer automated calibration / orientation procedures 

(VisualSFM, Apero, Eos Photomodeler, Microsoft Photosynth, 

Agisoft Photoscan, Photometrix Iwitness, 3DF Zephyr, etc.).  

Between the available feature-based detector and descriptor 

algorithms, the evaluated methods are afterwards reported. 

 

2.1 Scale Invariant Feature Transform (SIFT) 

SIFT (Lowe, 2004) derives a large set of compact descriptors 

starting from a multi-scale representation of the image (i.e. a 

stack of images with increasing blur simulating the family of all 

possible zooms). In this multi-scale framework, the Gaussian 

kernel acts as an approximation of the optical blur introduced 

by a camera. The detection and location of keypoints is done by 

extracting the 3D extrema with a DoG operator. SIFT detects a 

series of keypoints mostly in the form of small patch structures, 

locating their centre (x,y) and characteristic scale (σ) and then it 

computes the dominant orientation (θ) from the gradient 

orientation over a region surrounding each patch. Given 8 bins 

for quantizing the gradient directions, the dominant orientation 

(responsible for the rotation invariance of the keypoint) is given 

by the bin with the maximum value. 

The knowledge of (x, y, σ, θ) allows to compute a local 

descriptor of each keypoint’s neighbourhood that encodes the 

spatial gradient distribution by a 128-dimensional vector. This 

compact feature vector is used to match the keypoints extracted 

from different images. 

Since there are many phenomena that can lead to the detection 

of unstable keypoints, SIFT incorporates a cascade of tests to 

discard the less reliable points. Only those that are precisely 

located and sufficiently contrasted are retained. Main 

parameters that control the detection of points are: 

- local extrema threshold (contrast threshold): points with a 

lower local extrema value are rejected but, since this threshold 

is closely related to the level of noise in the input image, no 

universal value can be set. Additionally, the image contrast of 

the input image plays the inverse role of the noise level 

therefore the contrast threshold should be set depending on the 

signal to noise ratio of the input image. 

- local extrema localization threshold (edge threshold): it is 

used to discard unstable points, i.e. if the local extremum is on a 

valley. Extrema are associated with a score proportional to their 

sharpness and rejected if the score is below this threshold. The 

number of remaining features increases as the parameter is 

increased. The original value in Lowe (2004) is 10. 

Calibration of these parameters is fundamental for the efficiency 

of the detection mechanism. Following the literature (May et 

al., 2010) and our practical experiences with different dataset 

(from 1x1x1 to 10x20x50 meters), a value of 6 for the contrast 

threshold and of 10 for the edge threshold appear to be very 

suitable choices.  

In the presented tests, the VLFeat implementation 

(http://www.vlfeat.org) was used (Vedaldi & Fulkerson, 2010) 

in two versions: VLFeat3.4 (contrast threshold value set as in 

Lowe, 2004) and VLFeat6.0 (contrast threshold value adjusted 

from various experiences). 

 

2.2 SIFT-GPU 

SIFT-GPU (Sinha et al, 2006) is a SIFT implementation on the 

GPU based on the following steps:  

1. convert colour to intensity and up-sample or down-sample 

the input image; 

2. build Gaussian image pyramids (Intensity, Gradient, DoG);  

3. detect keypoint with sub-pixel and sub-scale localization;  

4. generate a compact list of features with GPU histogram 

reduction;  

5. compute feature orientations and descriptors.  

SIFT descriptors cannot be efficiently and completely computed 

on the GPU as histogram bins must be blended to remove 

quantization noise. Hence this step is normally partitioned 

between the CPU and the GPU. SIFT-GPU uses a GPU/CPU 

mixed method to build compact keypoint lists and to process 

keypoints getting their orientations and descriptors. SIFT-GPU, 

particularly on large size images, may get slightly different 

results on different GPUs due to the different floating point 

precision. 

In the presented tests, the SIFT-GPU implementation available 

at http://cs.unc.edu/~ccwu/siftgpu was used. To speed-up the 

computation, it presents some changes in the parameter values 

compared with the original implementation: 

- in the orientation computation, a factor σ=2.0 for the sample 

window size is used (typical value is σ=3.0) to increase the 

speed of 40%; 

- the keypoint’s location is refined only once and without 

adjusting it with respect to the Gaussian pyramids; 

- the image up-sampling is not performed; 

- the number of detected features (max 8000) and the image size 

(max 3200 pixel) are limited; 

- the local extrema threshold (contrast threshold) is set to 5.16 

instead 3.4. 
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In the presented tests, an optimized implementation of SIFT-

GPU is also experimented with these specifications: 

- the orientation computation uses σ=3.0 as in the original paper 

(Lowe, 2004); 

- image up-sampling is performed as in Lowe (2004); 

- the number of detected features and the image size are not 

limited; 

- the local extrema threshold is set to 6; 

- the detection is performed using GLSL, with an adaptation of 

the DoG threshold to detect more features in dark regions; 

- matching is done using CPU and not limiting the number of 

matches. 

 

2.3 Affine-SIFT (ASIFT) 

ASIFT (Morel & Yu, 2009) aims to corrects the SIFT problem 

in case of very different viewing angles, i.e. it aims to be more 

affine invariant than SIFT by simulating the rotation of camera 

axes. ASIFT first adds rotation transformation to an image. 

Then, it further obtains a series of affine images by a tilt 

transformation operation u(x, y) → u(tx, y) on the image in x 

direction. From a technical point of view, unlike SIFT which 

normalize all six affine parameters, ASIFT simulates three 

parameters (the scale and the two rotations along the camera 

vertical and horizontal axes) and normalizes the other 

parameters (rotation along the axis orthogonal to the image 

plane and the two horizontal and vertical translations). ASIFT 

detects many feature points (as the detection is repeated several 

times), but the detection time rises significantly and matching 

time rises even more (Mikolajczyk et al., 2010). Comparing 

many pairs of putative homologous points, ASIFT can 

accumulate many wrong matches. Furthermore it shows many 

wrong points when used on repeated patterns. 

In the presented test, the ASIFT implementation available at 

https://github.com/Itseez/opencv/blob/master/samples/python2/

asift.py was used. As suggested in Morel & Yu (2009) the 

number of tilts was set to 7. 

 

2.4 Colour SIFT 

Colour SIFT expresses different ways of extending the SIFT 

descriptor from grey-level to colour images using colour 

moments and moment invariants (Mindru et al., 2004). The 

main goal is to (i) obtain invariance from colour description 

instead of grey-values description in particular for photometric 

events (such as shadow and highlights) and (ii) exploit the 

colour information to solve possible problems arising from the 

colour to grey conversion.  

Bosch et al. (2006) compute SIFT descriptors over all three 

channels in the HSV colour space, resulting in a 3×128-

dimensional HSV-SIFT image descriptor. Van de Weijer and 

Schmid (2006) concatenate the SIFT descriptor with a weighted 

Hue histogram. But this revealed some instabilities of the hue 

around the grey axis and that the hue histogram component of 

the descriptor is not invariant to illumination color changes or 

shifts. 

Burghouts and Geusebroek (2009) defined a set of descriptors 

with 3 vectors of 128 values (following the opponent model of 

Eward Hering theory): the first vector is exactly the original 

intensity-based SIFT descriptor (representing the intensity, 

shadow and shading information), whereas the second and third 

vectors contain pure chromatic information as opponent colour 

channels (yellow–blue and red–green). 

Other approaches are presented in Geusebroek et al. (2001) and 

Van de Sande et al. (2010).  

In the presented tests, the implementation available at 

http://staff.science.uva.nl/~mark/downloads.html was used. 

 

2.5 Shifting Gradient Location an Orientation Histogram 

(SGLOH) 

SGLOH (Bellavia et al., 2010) is a modification of the GLOH 

descriptor (Mikolajczyk and Schmid, 2005) based on n circular 

grids centered on the feature point. SGLOH checks the 

similarity between two features not only in the gradient 

dominant orientation but also according to a set of discrete 

rotations. This is achieved by shifting the descriptor vector and 

by using an improved feature distance. This improves the 

descriptor stability to rotation for a reasonable computational 

cost. SGLOH descriptor is normally couple with the HarrisZ 

detector (Bellavia et al., 2008) for the extraction of the 

keypoints. 

In the presented tests, the SGLOH implementation of Bellavia 

et al. (2010) is used with 3 circular rings centred on the feature 

point and 8 radial sectors per ring. Images needed to be down-

sampled to 800x600 pixels. 

 

2.6 DAISY 

DAISY (Tola et al., 2010) is a local descriptor inspired by SIFT 

and GLOH but faster and more robust. In SIFT each bin 

contains a weighted sum of the norms of the image gradients 

around its centre, where the weights roughly depend on the 

distance to the bin centre. In DAISY these descriptors are 

reformulated so that they can be efficiently computed at every 

pixel location. This means that the histograms are computed 

only once per region and reused for all neighbouring pixels. To 

this end, the weighted sum of the norms is replaced with 

convolutions of the gradients in specific directions (normally 8) 

with several Gaussian filters. DAISY provides for a 264 

dimensional vector and this formulation gives the descriptor the 

appearance of a flower, hence its name. DAISY gives the same 

kind of invariance as the SIFT and GLOH but is much faster for 

dense-matching purposes and allows the computation of the 

descriptors in all directions with little overhead (Winder et al., 

2009). 

In the presented tests, the DAISY implementation available at 

http://cvlab.epfl.ch/software/daisy was used. 

 

2.7 Linear Discriminant Analysis (LDAHash) 

LDAHash (Strecha et al. 2012) is a SIFT-like local binary 

feature descriptor that maps the descriptor vectors into the 

Hamming space, where the Hamming metric used to compare 

the resulting representations. LDAHash introduces a global 

optimization scheme to better take advantage of training data 

composed of interest point descriptors corresponding to 

multiple 3D points seen under different views. LDAHash 

performs a Linear Discriminant Analysis (LDA) on the 

descriptors before the binarization. Binarization techniques take 

advantage of training data to learn short binary codes whose 

distances are small for positive training pairs and large for 

others. This is useful to reduce the descriptor size and increase 

the performances of the descriptor. However LDAHash uses an 

exhaustive linear search to find the matching points, which 

reduces significantly its efficiency. Moreover LDAHash is a 

supervised and data-dependent approach that needs additional 

human labelling in the needed training stage. The approach is 

then fast and usable only when similar training data are 

available. In the presented tests the implementation available at 

http://cvlab.epfl.ch/research/detect/ldahash was used. 

 

2.8 Speeded Up Robust Features (SURF) 

The SURF descriptor (Bay et al. 2008) implements a similar 

algorithm to SIFT but reduces the processing time by 

simplifying and approximating the steps. All layers of the 

pyramid are generated from the original image by up-scaling the 
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filter size rather than taking the output from a previous filtered 

layer. The final descriptor vector has 64 dimensions. SURF can 

be computed efficiently at every pixel, but it introduces artefacts 

that can degrade the matching performance when used densely.  

In the presented tests, the implementation available at 

http://www.mathworks.com/matlabcentral/fileexchange/13006-

fast-corner-detector was used. We coupled SURF with the 

FAST detector (Rosten et al., 2010). 

 

Dataset 

 

# 

img 

Dimensions 

(WxHxD)[m] 

Camera  

model 

Sensor size 

[mm] 

Image resol. 

[pixel] 

Pixel size 

[mm] 

Nominal focal 

length [mm] 

A 8 4 x 2 x 0.5 Kodak DSC Pro 36 x 24  4500x3000 0.008 35 

B 21 1 x 1 x 0.2 Nikon D3X 35,9 x 24 6048x4032 0,006 50 

C 39 54 x 19 x 1 Nikon D3100 23,1 x 15,4 4608x3072 0,005 18 

D 48 19 x 11 x 5 Nikon D3100 23,1 x 15,4 4608x3072 0,005 18 

Table 1: Main characteristics of the employed datasets for the evaluation of feature-based methods for tie point extraction. 
 

A: Jaguar B: Testfield C: Albergati D: Porticoes 

 
   

    

    

Figure 1: The employed datasets with their images and different camera networks: Jaguar (A), Testfield (B), Albergati (C), Porticoes 

(D). They feature high-resolution images, convergent acquisitions, variable image overlap, camera rolls, flat and textureless surfaces 

as well as repeated patterns and illumination changes. 

 

3. DATASETS DESCRIPTION 

The evaluation of the feature-based methods performances and 

potentialities is performed with four datasets (Fig. 1):  

A) Jaguar bass-relief, a heritage monument located in Copan 

(Honduras) with uniform texture and highly overlapping 

convergent images. Ground truth measurements are available. 

B) Calibration testfield, with coded targets and scale bars, 

imaged by highly overlapped and convergent images. Ground 

truth measurements are available for this datasets. 

C) Albergati building, a three floors historical palace (54 x 19 

m) characterized by repeated brick walls, stone cornices and a 

flat facade. The camera was moving along the façade of the 

building, with some closer shots of the entrances. 

D) Building with porticoes, a three floors historical building (19 

x 10 m) characterized by arches, pillars/columns, cross vault 

and plastered wall. The camera was moving along the porticoes, 

with some closer shots of the columns. 

Other characteristics of the employed photogrammetric datasets 

are summarized in Tab.1. The datasets are characterized by 

different image scales (ranging from 1/800 for the Albergati 

case to 1/30 for the calibration dataset), image resolution, 

number of images, camera network, object texture and size. The 

employed datasets try to verify the efficiency of different 

techniques in different situations (scale variation, camera 

rotation, affine transformations, etc.). In particular datasets C 

and D represent urban test frameworks summarizing scenarios 

typical of historical urban environments. The datasets contain, 

besides convergent imaging configurations and some 

orthogonal camera rolls, a variety of situations typical of failure 

cases, i.e. 3D scenes (non-coplanar) with homogeneous regions, 

distinctive edge boundaries (e.g. buildings, windows/doors, 

cornices, arcades), repeated patterns (recurrent architectural 

elements), textureless surfaces and illumination changes. With 

respect to other evaluations where synthetic datasets, indoor 

scenarios, low resolution images, flat objects or simple 2-view 

matching procedures are used and tested, our datasets are more 

varied and our aim is the final scene’s 3D reconstruction. The 

datasets are available to the scientific community for research 

purposes. 

 

4. EXPERIMENTAL SETUP AND EVALUATION 

RESULTS 

In order to have a common evaluation procedure, once the 

feature points are extracted and described with the 

aforementioned algorithm implementations, the descriptors 

matching procedure, the outlier detection phase and the final 

bundle adjustment are run inside the same software 

environment. Particularly, the generation of the correct image 
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correspondences is performed following (Agarwal et al., 2009; 

Frahm et al., 2010) and then RANSAC to eliminate possible 

mismatches - or one of its variants (Chum et al., 2004; Chum et 

al., 2005; Chum & Matas, 2005, 2008). Other similar 

approaches are presented in (Nister & Stewenius, 2006; 

Farenzena et al., 2009).  

The performed tests compare the results achieved at the end of 

the descriptor matching phase and after the bundle solution to 

better understand the performances of the feature-based 

methods for 3D reconstruction purposes.  

In particular, the following outcomes were analysed: 

- pairwise matching efficiency: using a set of images (Fig. 2) 

featuring illumination differences, textureless surfaces, possible 

loss of information in the colour-to-grey conversion and 

elements with strong 3D features, we tested pairwise matching 

efficiency of the operators with respect to three camera 

movements: (i)  parallel with limited baseline (00-01); (ii) 

rotation of 90° (00-03); (iii) tilt of more than 30° (01-02). The 

number of correct inlier matches (after the RANSAC phase) is 

then normalized with all putative correspondences: 
 

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
# 𝑖𝑛𝑙𝑖𝑒𝑟𝑠

# 𝑝𝑢𝑡𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑟𝑟𝑖𝑠𝑝𝑜𝑛𝑑𝑎𝑛𝑐𝑒𝑠
 

 
 

    

00 01 02 03 

Figure 2: Images used to test pairwise matching efficiency. 
 

The optimized SiftGPU obtained the higher number of correct 

inlier for each situation (Table 2). This is probably due to the 

variation of the DoG threshold in the dark areas, allowing a 

higher number of matching. Conversely, ASIFT seems the more 

efficient solution from the efficiency point of view (Table 3). 

 
 PARALLEL  

00 - 01 

ROTATE 90° 

00 - 03 

TILT 45° 

01 - 02 

ASIFT 1354 1079 224 

COLSIFT 590 263 52 

DAISY 536 451 67 

LDAHash 1482 1703 187 

SGLOH 172 86 41 

SIFT+GPU 964 1033 116 

SIFTGPUoptim 2222 2679 330 

FAST + SURF 80 36 13 

VLFeat3.4 1022 1344 239 

VLFeat 6 440 388 99 

Table 2: Total number of correct inliers for each operator. 
 

 PARALLEL 

00 - 01 

ROTATE 90° 

00 - 03 

TILT 45° 

01 - 02 

ASIFT 0,880 0,769 0,66 

COLSIFT 0,693 0,553 0,65 

DAISY 0,701 0,731 0,663 

LDAHash 0,657 0,553 0,539 

SGLOH 0,524 0,434 0,164 

SIFT+GPU 0,593 0,532 0,370 

SIFTGPUoptim 0,698 0,553 0,445 

FAST + SURF 0,176 0,099 0,03 

VLFeat3.4 0,652 0,556 0,571 

VLFeat 6 0,652 0,617 0,526 

Table 3: Efficiency of each operator. 
 

- number of oriented cameras: Fig. 3 shows that ColSIFT and 

FAST+SURF achieve poor results in case of b/w objects 

(Testfield) and scenes with uniform colour (Portici). Best 

performances are obtained with ASIFT, LDAHash, SiftGPU 

and VLFeat. 
 

 
Figure 3: Percentage of oriented cameras for each dataset and feature-

based method. 
 

- root mean square error of the bundle adjustment (Fig. 4): it 

expresses the re-projection error of all computed 3D points. 

ASIFT and SIFT-GPU have limited results in all the datasets 

(last one probably due to changes in the parameter values 

compared with the original one). VLFeat shows rather good 

results as well as FAST+SURF although not able to orient all 

the images in the datasets (just 20% for the Testfield and 

Porticoes dataset). 
 

 
Figure 4: Results of the bundle adjustment for each dataset in terms of 

reprojection error. 
 

- visibility of 3D points in more than 3 images (Fig. 5): the 

results show that more than 50% of the triangulated points are 

visible at least in 3 images, although for highly overlapped 

images (Testfield and Jaguar) this might not be so significant. 

- average rays per 3D points (i.e. the redundancy of the 

computed 3D object coordinates): for the Jaguar and Testfield 

datasets the point multiplicity is shown in Fig. 6a and Fig. 7a. 

In comparison with the ground truth measurements and despite 

the high overlap of the images (almost 100% for the entire 

dataset), the feature-based methods show a low average 

multiplicity. 

- average intersection angles per 3D points: as 3D from images 

is determined by the triangulation, a higher intersection angle of 

homologues rays provides for more accurate 3D information. 

The Testfield and Jaguar datasets consist of highly overlapping 

images (almost 100%) acquired with very convergent image, 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5, 2014
ISPRS Technical Commission V Symposium, 23 – 25 June 2014, Riva del Garda, Italy

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-5-47-2014 51



 

therefore high intersection angles should be expected. On the 

other hand, the average angles (Fig. 6b and 7b) are always quite 

low, compared to the ground truth measurements. 

- points per intersection angle: the analysis of the Jaguar dataset 

(Fig. 6c) shows that less than 10% of the correspondences 

provide for a 3D point under an angle larger than 60 degrees. 

Instead more than 30% of the 3D points are determined with an 

intersection angle smaller than 20 degrees (LDAHash up to 

50%, VLFeat3.4 almost 40%). The results of the Testfield 

dataset are pretty similar and all the feature-based methods 

normally provide 3D points with a small intersection angle (Fig. 

7c). 

- theoretical precision of the computed 3D object coordinates 

(for the Testfield dataset): in comparison with the ground truth 

values (x=0.01 mm, y=0.009 mm, z=0.017mm – Z is the 

depth axis), all the feature-based methods deliver much higher 

accuracy (Fig. 8a). SGLOH has so high values due that the used 

implementation process only low-resolution images. Observing 

Fig.6c and Fig. 7c - i.e. fact that a large number of 3D points are 

determined with an intersection angle smaller than 10 degrees – 

after removing all those points we obtained much better 

theoretical precisions of the object coordinates (Fig. 8b). 

 

 
Figure 5: The visibility of the derived 3D points in more than 3 images 

(normalized with respect to the all extracted points).  
 

 

a)  b) c)  

Figure 6: The Jaguar dataset: average rays per computed 3D points (a), average intersection angles (b) and normalized number of points wrt the 

intersection angles (c). 

 

a)  b) c)  

Figure 7: The Testfield dataset: average rays per computed 3D points (a), average intersection angles (b) and normalized number of points wrt the 

intersection angles (c). 

 

a) b)  

Figure 8: Derived theoretical precision of the computed object coordinates for the Testfield dataset: statistics for all 3D points (a) and for the 3D 

points with an intersection angle larger than 10 degrees (b). The SGLOH method has low accuracy results as the used implementation can process 

only low-resolution images (800x600 pixel). ColSIFT and SURF, as they oriented a very low number of cameras, were not included in this analysis. 
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5. CONCLUSIONS 

The paper reports some experiments and evaluations carried out 

to test the performances and efficiency of common feature-

based methods used for automated homologues point extraction. 

Different datasets were used featuring scale variations, camera 

rotations, illumination changes, affine transformations, variable 

image overlap and resolution, flat and textureless surfaces, 

repeated patterns. Image correspondences were extracted 

following the typical detection, description, matching and 

blunder detection phases. Then a bundle adjustment was used to 

derive the camera poses and sparse 3D reconstructions. The 

achieved results were compared and the following 

considerations can be summarized: 

 real and complex scenarios show that the automated image 

orientation is still an open issue and that unsuccessful 

results can still be achieved; 

 each method has a set of parameters which needs to be 

correctly set otherwise its performances can be very poor 

(no unique set of parameter is valid in all the situations); 

 repeated patterns and 3D scenarios, very common in 

architectural scenes, show the necessity of more invariant 

descriptors vectors; 

 all the methods cannot detect correspondences on longer 

track of images and deliver 3D points with small 

intersection angles; 

 the small intersection angles affect negatively the quality of 

the 3D reconstruction but, given the large number of 

extracted correspondences, the low-angle intersections can 

be removed; 

 the processing time can be considerably high in case of 

high-resolution images and descriptors involving multiple 

detection routines or involving multiple channels; 

 comparing all the graphs, some operators have limited 

discrepancies, particularly SIFT-GPU and VLFeat which 

seem to be the more stable. 

Beside these considerations, we cannot declare any winner. For 

sure fully automated feature-based methods combined with 

accurate and reliable results are still a hot research topic. 

 

REFERENCES 

Aanæs H., Lindbjerg Dahl A., Steenstrup Pedersen K., 2012: Interesting 

Interest Points - A comparative study of interest point performance on a 

unique data set. Int. Journal of Computer Vision, Vol. 97(1), pp. 18-35 

Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R., 2009: 

Building Rome in a day. Proc. ICCV, Kyoto, Japan 

Apollonio, F.I., Fallavollita, F., Gaiani, M., Sun, Z., 2013: A colour 

digital survey of arcades in Bologna. M. Rossi (ed.), Colour and 

Colorimetry. Multidiscipliary contribution, Vol. IXb, Rimini, pp. 58-

68 

Bay, H., Ess, A., Tuytelaars, T., Van Gool, L., 2008: SURF: Speeded 

Up Robust Features. Computer Vision and Image Understanding, Vol. 

110(3), pp. 346-359 

Barazzetti, L., Scaioni, M., Remondino, F., 2010: Orientation and 3D 

modeling from markerless terrestrial images: combining accuracy with 

automation. The Photogrammetric Record, Vol. 25(132), pp. 356-381 

Barazzetti, L., Mussio, L., Remondino, F., Scaioni, M., 2011: 

Targetless camera calibration. Int. Archives of Photogrammetry, 

Remote Sensing and Spatial Information Sciences, Vol. 38(5/W16) 

Bay H., Ess A., Tuytelaars T., Van Gool L., 2008: SURF: Speeded Up 

Robust Features. Computer Vision and Image Understanding (CVIU), 

Vol. 110(3), pp. 346-359 

Bellavia, F., Tegolo, D., Valenti, C., 2008: A non-parametric scale-

based corner detector. Proc. ICPR, pp. 1-4 

Bellavia, F., Tegolo, D., Trucco, E., 2010: Improving SIFT-based 

descriptors stability to rotations. Proc. ICPR 

Bosch A., Zisserman A., Munoz X., 2006: Scene classification via 

pLSA. Proc ECCV, pp. 517-530 

Brown, M., Winder, S., Szeliski, R., 2005: Multi-image matching using 

multi-scale oriented patches. Proc. CVPR, pp. 510-517 

Burghouts, G. J., Geusebroek, J. M., 2009: Performance evaluation of 

local colour invariants. Computer Vision and Image Understanding, 

Vol. 113, pp. 48-62 

Calonder, M., Lepetit, V., Fua, P., 2010: BRIEF: Binary Robust 

Independent Elementary Features. Proc. ECCV, pp. 778-792 

Chum, O., Matas, J., Obdrzalek, S., 2004: Enhancing RANSAC by 

generalized model optimization. Proc. ACCV 

Chum, O., Matas, J., 2005: Matching with PROSAC – progressive 

sampling consensus. Proc. CVPR 

Chum, O., Werner, T., Matas, J., 2005: Two-view geometry estimation 

unaffected by a dominant plane. Proc. CVPR, pp. 772-779 

Chum, O., Matas, J., 2008: Optimal randomized RANSAC. IEEE 

Transactions on Pattern Analysis and Machine Intelligence,Vol.30(8), 

pp. 1472-1482 

Del Pizzo, S., Troisi, S., 2011: Automatic orientation of image 

sequences in Cultural Heritage. Int. Archives of Photogrammetry, 

Remote Sensing and Spatial Information Sciences, Vol. 38(5/W16) 

Deseilligny, M. P., Clery, I., 2011. Apero, an open source bundle 

adjustment software for automatic calibration and orientation of set of 

images. Int. Archives of Photogrammetry, Remote Sensing and Spatial 

Information Sciences, Vol. 38(5/W16) 

Farenzena, A.M., Fusiello, A., Gherardi, R., 2009: Structure-and-

Motion pipeline on a hierarchical cluster tree. Proc. of the IEEE Int. 

Workshop on 3-D Digital Imaging and Modeling 

Foerstner, W., Guelch, E., 1987: A fast operator for detection and 

precise location of distinct points, corners and center of circular 

features. ISPRS Conference on Fast Processing of Photogrammetric 

Data, Interlaken, Switzerland, pp. 281-305  

Frahm J.-M., Fite-Georgel P., Gallup D., Johnson T., Raguram R., Wu 

C., Jen Y.-H., Dunn E., Clipp B., Lazebnik S., Pollefeys M., 2010: 

Building Rome on a cloudless day. Proc. ECCV, pp. 368-381. 

Fraundorfer, F., Bischof, H., 2004: Evaluation of local detectors on 

non-planar scenes. Proc. Austrian Association for Pattern Recognition 

(AAPR), pp, 125-132. 

Geusebroek, J. M., van den Boomgaard, R., Smeulders, A. W. M., 

Geerts, H., 2001: Color invariance. IEEE Trans. Pattern Analysis and 

Machine Intelligence, Vol. 23(12), pp.1338-1350 

Harris, C., Stephens, M., 1988: A combined edge and corner detector. 

Proc. Alvey Vision Conference, pp. 147-151 

Heinly J., Dunn E., Frahm J.-M., 2012: Comparative evaluation of 

binary features. Proc. 12th ECCV, pp. 759-773 

Kadir, T., Zissermann, A., Brady, M., 2004: An affine invariant salient 

region detector. Proc. 8th ECCV 

Ke, Y., Sukthankar, R., 2004: PCA-SIFT: A more distinctive 

representation for local image descriptors. Proc. CVPR, pp. 506-513 

Klein, G., Murray, D., 2008: Improving the agility of keyframe-based 

SLAM. Proc. ECCV 

Juan, L., Gwon, O., 2009: A comparison of SIFT, PCA-SIFT and 

SURF. Int. Journal of Image Processing, Vol. 3(4), pp. 143-152 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5, 2014
ISPRS Technical Commission V Symposium, 23 – 25 June 2014, Riva del Garda, Italy

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-5-47-2014 53



 

Leutenegger, S., Chli, M., Siegwart, R., 2011: BRISK: Binary Robust 

Invariant Scalable Keypoints. Proc. ICCV, pp. 2548-2555 

Lindeberg, T., 1998: Feature detection with automatic scale selection. 

Int. Journal of Computer Vision, Vol. 30(2), pp. 79-116 

Lowe, D., 2004: Distinctive image features from scale-invariant 

keypoints. Int. Journal of Computer Vision, Vol. 60(2), pp. 91-110 

Mair, E., Hager, G., D., Burschka, D., Suppa, M., Hirzinger, G., 2010: 

Adaptive and generic corner detection based on the accelerated segment 

test. Proc. ECCV 

May M., Turner M. J., Morris T., 2010: Scale Invariant Feature 

Transform: a graphical Parameter Analysis. Proc. BMVC 2010 UK 

postgraduate workshop 

Mikolajczyk, K., Schmid, C., 2004: Scale and affine invariant Interest 

point detectors. Int. Journal Computer Vision, Vol. 60(1), pp. 63-86 

Mikolajczyk, K., Schmid, C., 2005: A performance evaluation of local 

descriptors. IEEE Transactions on Pattern Analysis and Machine 

Intelligence, Vol. 27(10) 

Mikolajczyk, K, Kalal, Z, Matas, J., 2010: PN Learning: Bootstrapping 

binary classifiers by structural constraints. Proc. CVPR, pp. 49-56 

Mindru, F., Tuytelaars, T., Van Gool, L., Moons, T., 2004:  Moment 

invariants for recognition under changing viewpoint and illumination. 

Computer Vision and Image Understanding, Vol. 94(1-3), pp. 3-27 

Morel J-M., Yu, G., 2009: ASIFT: a new framework for fully affine 

invariant comparison. SIAM Journal on Imaging Sciences, Vol. 2(2), 

pp. 438–469 

Moravec, H.P., 1979: Visual mapping by a robot rover. Proc. 6th Int. 

Joint Conference on Artificial Intelligence, pp. 598-600 

Nister, D., 2003: Preemptive RANSAC for live structure and motion 

estimation. Proc. ICCV, pp. 199-206 

Nister, D., Stewenius, H., 2006: Scalable recognition with a vocabulary 

tree. Proc. CVPR, Vol. 5 

Oyallon, E., Rabin, J., 2013: An Analysis and implementation of the 

SURF method and its comparison to SIFT. IPOL Journal - Image 

Processing On Line, pre-print 

Remondino, F., 2006: Detectors and descriptors for photogrammetric 

applications. Int. Archives of Photogrammetry, Remote Sensing and 

Spatial Information Sciences, Vol. 36(3), pp. 49-54 

Remondino, F., Del Pizzo, S., Kersten, T., Troisi, S., 2012: Low-cost 

and open-source solutions for automated image orientation – A critical 

overview. Proc. EuroMed 2012 Conference, LNCS 7616, pp. 40-54 

Rodehorst, V., Koschan, A., 2006: Comparison and evaluation of 

feature point detectors. Proc. 5th International Symposium Turkish-

German Joint Geodetic Days 

Roncella, R., Re, C., Forlani, G., 2011: Performance evaluation of a 

structure and motion strategy in architecture and Cultural Heritage. Int. 

Archives of Photogrammetry, Remote Sensing and Spatial Information 

Sciences, Vol. 38(5/W16) 

Rosten E., Porter, R., Drummond T., 2010: Faster and better: a machine 

learning approach to corner detection. IEEE Trans. Pattern Analysis 

and Machine Intelligence, Vol. 32, pp. 105-119  

Rublee, E., Rabaud, V., Konolige, K., Bradski, G., 2011: ORB: an 

efficient alternative to SIFT or SURF. Proc. ICCV 

Schaffalitzky, F. and Zisserman, A., 2002: Multi-view matching for 

unordered image sets. Proc. ECCV 

Smith, S.M., Brady, J.M., 1997: SUSAN – a new approach to low level 

image processing. Int. Journal Computer Vision, Vol. 23(1), pp. 45-78 

Schmid C., Mohr R., Bauckhage C., 2000. Evaluation of interest point 

detectors. Int. Journal of Computer Vision, Vol. 37(4), pp. 151-172 

Snavely, N., Seitz, S.M., Szeliski, R., 2008: Modeling the world from 

internet photo collections. Int. Journal of Computer Vision, Vol. 80(2), 

pp. 189-210 

Strecha, C., Bronstein, A., Bronstein, M., Fua P., 2012: LDAHash: 

Improved matching with smaller descriptors. IEEE Transaction on 

Pattern Analysis and Machine Intelligence, Vol. 34(1), pp. 66-78 

Sinha, S.N., Frahm, J.M., Pollefeys, M., Genc, Y., 2006: GPU-based 

video feature tracking and matching. Proc. Edge Computing Using New 

Commodity Architectures workshop 

Tola E., Lepetit V., Fua P., 2010: DAISY: An Efficient Dense 

Descriptor Applied to Wide-Baseline Stereo. IEEE Transactions on 

Pattern Analysis and Machine Intelligence, Vol. 32(5) 

Tuytelaars, T., Van Gool, L., 2004: Matching widely separated views 

based on affine invariant regions. Int. Journal of Computer Vision, Vol. 

59(1), pp. 61-85 

Ullman, S., 1979: The interpretation of Structure from Motion. Proc. 

Royal Society London, Vol. 203(1153), pp. 405-426 

van de Sande, K. E. A., Gevers, T., Snoek C. G. M., 2010: Evaluating 

color descriptors for object and scene recognition. IEEE Transactions 

on Pattern Analysis and Machine Intelligence, Vol. 32(9), pp. 1582-

1596 

van de Weijer, J., Schmid, C., 2006: Coloring local feature extraction. 

Proc. ECCV, pp. 334-348 

Van Gool, L., Moons, T., Ungureanu, D., 1996: Affine / photometric 

invariants for planar intensity pattern. Proc. 4th ECCV, pp. 642-651 

Vedaldi, A., Fulkerson, B., 2010: VLFeat - An open and portable 

library of computer vision algorithms. Proc.18th ACM Intern. Conf. on 

Multimedia 

Yeo, C., Ahammad, P., Ramchandran, K., 2011: Coding of image 

feature descriptors for distributed rate-efficient visual correspondences. 

Int. Journal of Computer Vision, Vol. 94(3), pp. 267-281 

Winder, S., Gang, H., Brown, M., 2009: Picking the best DAISY. Proc. 

CVPR, pp.178-185 

Wu, J., Cui Z., Sheng V.S., Zhao P., Su D., Gong S., 2013. A 

comparative study of SIFT and its variants. Measurement Science 

Review, Vol. 13(3) 

Wu, C., 2013: Towards linear-time incremental Structure from Motion. 

Proc. 3D Vision, pp. 127-134 

Wu, C., 2014: SiftGPU: A GPU implementation of Scale Invariant 

Feature Transform (SIFT). http://cs.unc.edu/~ccwu/siftgpu/ (last access: 

04 May 2014) 

Zhao, X., Zhou, Z., Wu, W., 2012: Radiance-based color calibration for 

image-based modeling with multiple cameras. Science China 

Information Sciences, Vol. 55(7), pp.1509-1519. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5, 2014
ISPRS Technical Commission V Symposium, 23 – 25 June 2014, Riva del Garda, Italy

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-5-47-2014 54


