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ABSTRACT: 

 

Image-based modeling techniques are an important tool for producing 3D models in a practical and cost effective manner. Accurate 

image-based models can be created as long as one can retrieve precise image calibration and orientation information which is 

nowadays performed automatically in computer vision and photogrammetry. The first step for orientation is to have sufficient 

correspondences across the captured images. Keypoint descriptors like SIFT or SURF  are a successful approach for finding these 

correspondences. The extraction of precise image correspondences is crucial for the subsequent image orientation and image 

matching steps. Indeed there are still many challenges especially with wide-baseline image configuration. After the extraction of a 

sufficient and reliable set of image correspondences, a bundle adjustment is used to retrieve the image orientation parameters. 

In this paper, a brief description of our previous work on automatic camera network design is initially reported. This semi-automatic 

procedure results in wide-baseline high resolution images covering an object of interest, and including approximations of image 

orientations, a rough 3D object geometry and a matching matrix indicating for each image its matching mates. The main part of this 

paper will describe the subsequent image matching where the pre-knowledge on the image orientations and the pre-created rough 3D 

model of the study object is exploited. Ultimately the matching information retrieved during that step will be used for a precise 

bundle block adjustment. 

Since we defined the initial image orientation in the design of the network, we can compute the matching matrix prior to image 

matching of high resolution images. For each image involved in several pairs that is defined in the matching matrix, we detect the 

corners or keypoints and then transform them into the matching images by using the designed orientation and initial 3D model. 

Moreover, a window is defined for each corner and its initial correspondence in the matching images. A SIFT or SURF matching is 

implemented between every matching window to find the homologous points. This is followed by Least Square Matching LSM  to 

refine the correspondences for a sub-pixel localization and to avoid inaccurate matches. Image matching is followed by a bundle 

adjustment to orient the images automatically to finally have a sparse 3D model. We used the commercial software Photomodeler 

Scanner 2010 for implementing the bundle adjustment since it reports a number of accuracy indices  which are necessary for the 

evaluation purposes. The experimental test of comparing the automated image matching of four pre-designed streopairs shows that 

our approach can provide a high accuracy and effective orientation when compared to the results of commercial and open source 

software which does not exploit the pre-knowledge about the scene.   

 

 

1. INTRODUCTION 

 

Image-based modeling (IBM) (Remondino and El-Hakim, 

2006) is an important tool nowadays for realistic 3D modeling 

and other applications in close range photogrammetry (CRP) 

and computer vision (CV). One crucial step within IBM is the 

image network planning and subsequent image orientation, or 

bundle adjustment. The following paper is concerned with those 

tasks. Today, different software is available for performing the 

image orientation task automatically, either commercial like 

Photomodeler (PhotoModeler, 2009) and Photoscan (Photoscan, 

2011) or open-source like Bundler (Snavely, 2010), MICMAC 

(Pierrot-Deseilligny, 2012) and VSfM (Wu, 2012). However, 

there is no guarantee about the correct results and often the 

reliability is very low (Remondino et al., 2012) especially in the 

case of large datasets, wide baseline configurations, 

illumination changes, or when repetitive pattern and 

homogenous texture areas exist.   

Image orientation can be achieved more reliably when certain 

information is available like initial camera exterior and interior 

orientation parameters, image overlapping information and 

information about the object geometry and structure. 

Accordingly, the first demand of detecting image points and 

matching them with other correspondences in other images 

represents the most challenging tasks in the whole procedure 

(Remondino et al., 2012; Yang and Yuille, 1995) Matching is 

also a time dependent operation especially when the captured 

images   are: 

- - of high resolution (HR), which is the case nowadays even with 

consumer compact cameras or smartphones. 

- - arranged in sparse block where the computation cost according 

to Barazzetti et al. (2010) is       with a combination of 

images  
    

 
   

The paper will address those issues by a consequent exploitation 

of the knowledge about scene geometry and approximate 

camera positions. In Alsadik et al. (2013) an approach for a 

fully automatic camera network planning tool is described. 

Starting from a video capture of the object of interest, such as a 

building or a statue, and using established shape-from-motion 

techniques, a simple 3D model is created. Based on this model, 
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the optimal camera locations for high resolution images are 

derived, where optimal refers to (i) retrieving a maximum point 

accuracy and (ii) keep the number of images at a minimum to 

reduce computation time. In a subsequent step, the camera 

operator is guided to those optimal places and asked to take the 

high resolution images (cf. section 2.1 below).  

The paper continues along those research lines. Since the 

approximate orientations of high resolution images and the 

scene geometry are known, that knowledge is exploited for the 

task of correspondences matching and final image orientation, 

including bundle adjustment. Especially the fact that for each 

image its matching mates are known independently from actual 

matching techniques is an advantage over other approaches, 

such as presented in (Snavely et al., 2008). In those methods the 

so-called matching tree is computed from a brute-force 

matching (all images against all), because no pre-information 

about image locations is available. Those techniques are not 

only expensive in terms of computation time but also vulnerable 

to problems of mismatches, e.g. resulting from repetitive 

patterns or symmetries in building architecture (Kosecka and 

Zhang, 2010), as shown in Fig.1. 

Image matching is followed by a bundle adjustment to orient the 

images automatically and to finally have a sparse 3D model. We 

use the commercial software Photomodeler Scanner 2010 

(PhotoModeler, 2009) for implementing the bundle adjustment 

since it reports all the accuracy indices (quality and RMSE) 

which are necessary for the evaluation purposes. However, open 

source software might be used later in the bundle adjustment 

task like SBA (Lourakis and Argyros, 2004) and APERO 

(Pierrot-Deseilligny, 2012). 

 
Figure 1. Repetitive texture patterns affecting the matching and 

leading to wrong correspondences. 

 

 

2. METHOD 

 

The research will investigate a robust methodology for the 

extraction of image correspondences following three successive 

steps: 

- Designing the camera network and image capture. 

- Computing the spanning tree of matching.  

- Guiding the multi windows matching by exploiting 

the rough object model. 

  

2.1 Camera network design and image capture 

  
Designing the imaging network (Fraser, 1996; Mason, 1995) is 

still a challenging task in photogrammetry due to many  factors 

related to the nature and complexity of the study object, the 

used camera, accessibility and visibility. In Alsadik et al. (2013) 

an approach for optimal network design for cultural heritage 

objects (like buildings and statues) is presented. The method is 

based on creating a rough point cloud representing the object 

geometry from a video stream, employing a camera tracking or 

SfM techniques (Nister, 2001; Pollefeys et al., 2004).  This 

point cloud is the base for designing a dense camera network 

that is filtered and optimized according to the coverage and 

accuracy requirement as shown in Fig. 2. The design will 

guarantee at least three covering cameras per point beside a total 

estimated error that fits the 3D modeling requirement. 

Therefore, with the assumption of using a pre-calibrated 

camera, the image interior and exterior orientation will be 

initially known.  

A guiding procedure is followed on the basis of creating 

synthetic images. These synthetic images are important to guide 

the camera operator to capture the pre-designed image poses 

computed in the designing step. For each synthetic image an 

equivalent 3D point cloud is created. Therefore every pixel in 

the synthetic image will have the color information (RGB) and 

an assigned position information (XYZ), retrieved from the 

initial point cloud. 

SIFT (Lowe, 2004) keypoint matching is implemented to 

measure whether the high resolution images are correctly 

captured. Finally, a space resection is performed for every 

acquired image in order to check the shift with respect to the 

designed orientation and to decide whether to proceed or to 

capture again the same image. After the guiding setup is 

finished, a complete set of HR images with their initial exterior 

orientation is available. Further information is available in 

(Alsadik et al., 2012, 2013). 

  
Figure 2. Camera network design (Alsadik et al., 2012) 

 

2.2 Guided matching for correspondences extraction 

 

The guided image matching method will be presented in the 

following sections. Firstly, the advantages in developing the 

spanning tree of matching is discussed and secondly, the usage 

of the scene geometry and the initial camera orientations is 

presented.  

 

2.2.1 Spanning tree of matching: The spanning tree of 

matching in our approach can be extracted by projecting back 

the object points that are used in the planning steps. This helps 

to decide their visibility status within the captured images by 

using: 

- The pre-designed exterior orientation parameters. 

- The surface points and normal directions. 

- The interior camera parameters.   

 

Therefore, the decision of matching two images is decided by 

testing the existence of shared points that is visible in both 

images. Fig. 3 illustrates the spanning tree for the guided 

matching of 106 images around a building. The very dense tree 

of the large set of images indicates the necessary huge amount 

of data to be handled and processed. Snavely et al. (2008) 

presented their skeletal procedure for the matching tree in the 

case of a large, unordered and highly redundant sampled photo 

collection. However, this problem is already solved in our 

approach since, as mentioned before, the definite relation 

between the image pairs in the designing stage is known. 
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Figure 3. The spanning tree and the matching matrix of a pre-planned network of 106 images 

 

2.2.2 Guided image matching by exploiting the object 

model: Once the spanning tree is defined, the correspondences 

matching is only done in stereo pairs which are connected 

within the tree. For the actual tie point matching in a stereo pair, 

methods which exploit the pre-knowledge of camera orientation 

and scene geometry are used, like the epipolar resampling 

approach of stereo images  (Cho et al., 1992) or utilizing 

directly the initial 3D model. In this paper the guided matching 

is based on the second technique. This approach should 

strengthen the matching by providing a very good 

approximation for the corresponding points in the search 

images. In addition possible problems due to symmetries 

occurring at opposite façades will be avoided (e.g. Fig. 1). 

The rough 3D scene geometry was already employed in the 

guiding of the camera operator: for each planned camera 

position a synthetic image was composed, also carrying the 

XYZ scene information per pixel. Those images are now being 

re-used. For each real image first a 2D affine transformation is 

estimated, because the real captured image does not fit exactly 

to the planned (synthetic image). The parameters for the 

transformation are computed using SIFT keypoints in both 

images (the synthetic and real image), which gets resampled to 

a similar resolution as the synthetic one. After the 

transformation the real image gets assigned the scene geometry 

as well.  

For each stereo pair, first SIFT keypoints are extracted in one of 

the resampled real images. Since the XYZ position of those 

keypoints is known as well as the approximate exterior 

orientation of the stereo mate, each keypoint location can be 

projected into the stereo mate. The actual point matching is then 

done in the full resolution images, but restricted to windows 

defined around the estimated locations as shown in Fig. 4. The 

window size is a user-defined value since it depends on many 

factors like the resolution of the images, the initial image 

orientation, and the density of the tie points. As an alternative to 

SIFT we can use the SURF operator (Bay et al., 2008) and the 

normalized cross correlation (NCC) method.  

In the next step outliers are filtered through a RANSAC 

procedure, using a F-Matrix estimation. Although we work 

currently with calibrated cameras, thus the more restrictive 

essential matrix E could be employed, some flexibility is kept, 

in order to be able to work also with un-calibrated cameras. For 

a more accurate localization of the tie points, the Least Square 

Matching (LSM) method (Gruen, 1985) is used to refine the 

localization of the matched points into sub-pixel accuracy 

(Barazzetti et al., 2010). Accurate matching will certainly 

improve the image orientation results and the 3D modeling task 

at the end.  

 

 
Figure 4. Keypoints estimation in the high resolution images 
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Figure 5 illustrates the methodology of the whole guided-

matching technique. 

The area of matching between the stereo images will be 

constrained to only the object itself. This is due to the method 

which is based on the previously derived rough 3D model of the 

object. This will limit the search space between the stereo 

images, avoid the mismatching points resulted from the dense 

texture in the background, and reduce the processing time. 

However, this might be a disadvantage if we need to implement 

the self-calibration due to the possible poor distribution of the 

points in some cases when the object spans a small portion of 

the images.  

 
Methodology for entire workflow 

A) Network planning and HR image capture 

- Design the imaging network 

- Create synthetic images and match later with real images 

- Space resection for the orientation and validation of the real 

images 

- Create 3D point cloud for each image during the synthesizing 

step 

                B) Guided matching exploiting approximate 3D structure 

and image orientation 

- Compute the spanning tree of matching 

- Compute affine transf. between the master synthetic and resized 

real image to model the slight shift 

- SIFT keypoints detection of the master (left) real image 

- Interpolate their XYZ object coordinates 

- Use collinearity to estimate the homologous  xy-image 

coordinates in the right image 

- Transform the xy-image points into the full resolution images 

- Define a search window for each estimated point 

- SIFT descriptor matching (or SURF, or NCC) in HR images for 

each window in the stereopairs 

- Blunder detection and removal by RANSAC 

- LSM for refinement 

- Prepare and run bundle adjustment 

3D synthetic 
image

XYZ
(i=1:n)

Real image
(i=1:n)

Exterior 
orienation

(i=1:n)

Guiding 
system

Matching Tree 
(I,j)

SURF or SIFT 
detection – 

master image(i)

Interpolate XYZ

Project to image j
(Ln,Sn)

Affine 
transformation

3D real image

Window I,J   
 matching 

(SIFT,SURF,NCC)

Ransac LSM
Bundle 

adjustment

Network 
design

Video 
imaging 

Rough point 
cloud

 
 

 

 

Figure 5. The guided - Matching methodology by exploiting the 

3D model 

  

3. EXPERIMENT  

 

To investigate the efficiency of our new method for  guided 

correspondences matching,  a pre-designed block of 30 HR 

images of a monument is used, as shown in Fig. 6. The images 

are taken with a calibrated Canon 500D camera (15Mpx 

resolution) coupled with a 18mm focal length. 

 

 
Figure 6. The dataset of 30 images of a monument (Alsadik et 

al., 2013).  

 

 

4. RESULTS 

   

The results will first present a comparison between the full 

pairwise matching tree (typical of SfM tools) and the guiding 

matching presented in this paper. This is done by using the 

SIFT GPU implemented in the VSfM tool. The computed 

matching matrices are illustrated in Fig. 7a, b. The computation 

of the spanning tree in the guided matching is done by using the 

initial exterior orientation of the design as described in section 

2.1. 

 

  
a) b) 

Figure 7. The matching matrices: guided matching matrix 

according to the presented approach (a) and full pairwise 

matching matrix (b), typical of SfM approaches.   

 

Fig. 8 shows a typical full pairwise mismatching result between 

images 4 and 13 of the dataset (despite the use of RANSAC for 

outlier rejection) obtained with VSfM.  This is expected to be 

avoided in the guided matching procedure. 

To elaborate more about the advantage of the implemented 

guided matching, the images were resampled into four different 

sizes. The full pairwise matching of VSfM and the developed 

method are then compared in terms of processing time. The 

results are presented in Fig. 9 and Table 1 showing the clear 

improvement of the proposed method. 
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Figure 8. The wrong correspondences extracted by VSfM due to 

symmetrical or repetitive texture and pattern. 

 

 
Figure 9. The histogram shows the processing time for the full 

pairwise and the developed  spanning tree.  

 

 

Processing time [seconds] 

Image width resolution 
[pixels] 

Full pairwise 

approach 

Spanning tree 

approach 

640 82 48 

1600 134 71 

1920 303 152 

2240 440 209 

 

Table 1. The processing time for the full pairwise and the pre-

computed spanning tree matching. 

 

Moreover, the methodology of the guided matching is 

investigated by selecting three stereopairs of the monument 

dataset (Fig.6). The pairs are chosen in order to have wide and 

short image baseline configuration as well as moving objects in 

the background, as shown in Fig. 10.  

The guided matching was implemented exploiting the rough 

model as previously described, initiating the SIFT or SURF 

keypoints in the low resolution images. The SIFT operator 

extracts, on the master image (640*480), a total of 725 

keypoints. Among these, 109 points located in the area of 

interest defined by the 3D model remain. The test shows the 

power and efficiency of the approach to find the approximate 

corresponding points.  

 

 
Figure 10. The four images and the matching approximation 

results of the guided approach  

 

The keypoints are transformed into the full size of the images 

and define search windows for the final SIFT matching. Fig. 11 

illustrates a sample of the estimated SIFT keypoints after 

scaling and the windows (90*90 pixel) matching results and the 

final matching points after outlier removal.  

 

 
Figure 11. The guided matching estimation, multi windows 

matching and the results after the outliers removal.  

 

The previous results show the performance of the approach for 

pairwise matching. Finally the approach is evaluated through 

passing the entire matching results and the approximate image 

orientation parameters to a bundle block adjustment algorithm, 

in our case the Photomodeler software. The results are 

illustrated in Fig. 12 and Table 2. Several interesting 

observations can be made. Only three images (2,3 and 4) are 

oriented in the commercial (PhotoModeler) and the open source 

(VSfM) software while the first image couldn’t be oriented.    

In the guided matching approach based on SIFT, SURF, and 

NCC 256, 144 and 103 points are detected respectively which 

all belong to the study object and nothing is detected in the 

background. This is an advantage in the sense of avoiding 

mismatching due to repetitive pattern and moving objects.  

It must be noted that the average point marking residual in the 

guiding matching as illustrated in Table 2 is larger than the 

residual in the commercial software. This is probably due to the 

fact that the distortion due to the wide baseline between the first 

and the other images affected the SIFT or SURF descriptor 

matching efficiency. Moreover, SIFT showed to be slightly 

more efficient than SURF in terms of precision results as shown 

in Table 2.  

 

 

 

 

 

Image no. 4 Image no. 13 

Not matching (correct) 

GUIDED MULTI WINDOW MATCHING

OUTLIERS REMOVAL BY RANSAC

GUIDED MULTI WINDOW MATCHING

OUTLIERS REMOVAL BY RANSAC

Guided multi windows matching Guided multi windows matching 

Outlier removal by Ransac  Outlier removal by Ransac  

Matching points estimation   Matching points estimation   
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a) b) 

 
c) 

 

Figure.12. The bundle adjustment results with exaggerated error ellipsoids:  a) SIFT guided matching; b) SURF guided matching; c) 

NCC guided matching. 

 

 Guided matching  Photomodeler (smart match) VSfM 

SIFT SURF NCC 

No. of oriented images 4   4 4 3 3 

No. of tie points 256 144 103 287 304 

Avg. point marking residuals [pixels] 0.92 0.69 2.07 0.81 - 

Avg. point precisions [RMSE] 0.012 m 0.013 m 0.030 m 0.143 pixel 0.258 pixel 

Avg. point Angles [degrees] 22  16 21  6 - 

 

Table 2. Comparison of automated image orientation in different approaches 

 

 

5. DISCUSSION AND CONCLUSIONS 

 

The paper presented a new method to extract image 

correspondences using a guided method. It combines two 

complementary image modeling techniques: 

(i) a video-based SfM which is not sensitive to repetitive 

patterns and symmetries, because geometric feature tracking 

techniques can be used. Video-based SfM however does not 

lead to the best precision because of low resolution and short 

baseline image geometry. 

(ii) wide baseline images for the final processing, leading to 

much better image ray intersection geometry and accuracy.  

The inherent disadvantage of standard projects where no scene 

geometry can be used, namely the bad effects of repetitive 

patterns and object symmetries on image matching, do not 

influence our method. 

The presented approach starts with the automated camera 

network design and a subsequent guided image capture. The 

image capture and validation is the final design step before the 

guided image matching is started. A dataset of 30 images 

(4752*3168 pixels) of a monument was used to show the 

efficiency of the method. The use of the pre-computed spanning 

tree proves its efficiency when compared with the full pairwise 

matching of common SfM methods (e.g. VSfM). In comparison 

with a full matching tree, the advantage of our pre-planned 

design is to avoid mismatching results as shown Fig. 8 and to 

reduce computation time for the processing of high-resolution 

images. 
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The results obtained with the guided matching showed that the 

exploitation of the rough scene model and approximate image 

orientation provides a successful matching (see example in 

Fig.10) while state-of-the-art SfM techniques skipped one of the 

images.  

The final accuracy of both approaches is somewhat comparable, 

but because different images are involved in the final solution a 

more detailed check needs to be done in the future. 

As an additional future work, the epipolar resampling technique 

will be further investigated. One idea is to use it after the 

approach presented here, where the 3D geometry is exploited: 

the relative orientation of images is known very well and the 

epipolar resampling method can be used to find more tie points 

outside the object of interest. Secondly, the LSM refinement 

effect on the bundle adjustment will be evaluated too. 
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