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ABSTRACT: 

 

Emergency response ought to be rapid, reliable and efficient in terms of bringing the necessary help to sites where it is actually 

needed. Although the remote sensing techniques require minimum fieldwork and allow for continuous coverage, the established 

approaches rely on a vast manual work and visual assessment thus are time-consuming and imprecise. Automated processes with 

little possible interaction are in demand. This paper attempts to address the aforementioned issues by employing an unsupervised 

classification approach to identify building areas affected by an earthquake event. The classification task is formulated in the Markov 

Random Fields (MRF) framework and only post-event airborne high-resolution images serve as the input. The generated 

photogrammetric Digital Surface Model (DSM) and a true orthophoto provide height and spectral information to characterize the 

urban scene through a set of features. The classification proceeds in two phases, one for distinguishing the buildings out of an urban 

context (urban classification), and the other for identifying the damaged structures (building classification). The algorithms are 

evaluated on a dataset consisting of aerial images (7cm GSD) taken after the Emilia-Romagna (Italy) earthquake in 2012. 

 

 

1. INTRODUCTION 

1.1 General context 

In recent years, Earth Observation (EO) systems (satellite as 

well as aerial acquisitions) became a new asset at the disposal of 

emergency response teams in case of natural disasters and 

hazards (earthquake, tsunami, landslide, subsidence, flooding, 

hurricane, volcanic eruption, etc.). EO systems can perform 

rapid mapping of damages and help guide rescue efforts. This 

was formalised in 2000 when ESA, CNES and CSA signed the 

‘International Charter - Space and Major Disasters’ – an 

agreement to prioritise image acquisition over disaster zones. 

Among the most tragic and hazardous natural disasters, 

earthquakes represent the highest mortality rate (Bartels and 

VanRooyen, 2011). Although fully-functional early warning 

systems are still far to be achieved, it is possible to reduce the 

impact of an event through an effective risk mitigation and 

disaster management plan. In this respect, collecting real-time 

or near real-time data of post-event damaged area can be of 

paramount importance in order to plan an adequate rescue and 

reconstruction response. For instance, in urban areas the amount 

of building damage, the rate of collapsed buildings and the type 

of damage affecting each building represent crucial information 

for a successful post-event strategy (Schweier and Markus, 

2006). In order to gather this information, the use of geo-spatial 

data proved to be valuable and relevant for the entire disaster 

management cycle (Altan et al., 2001; Clark et al., 2010). 

Although there are many data sources that can be efficiently 

exploited by the geo-information science, remotely sensed data 

are usually preferred over ground surveys, that are restricted to 

façade detection and limited by productivity issues. Remote 

sensing techniques, require minimal fieldwork and allow 

continuous coverage, fast response, digital processing and 

quantitative results to be achieved with an automatic or semi-

automatic approach. A comprehensive review of these methods 

can be found in (Rezaeian and Gruen, 2008; Dell’Acqua and 

Gamba, 2012; Dong and Shan, 2013), where their application 

for obtaining building damage information is discussed. 

Within the remote sensing application field, data are collected 

either by space-borne or airborne platforms, and both passive 

(e.g. optical and multispectral imagery) and active (e.g. LIDAR 

and SAR technology) sensors are effectively exploited. Optical 

images can be used to extract a number of building properties, 

such as grey scale, spectral, texture, shape and morphological 

features (Rathje et al., 2005; Guo et al. 2009; Dong and Shan, 

2013). Among optical systems, satellite platforms are usually 

preferred when a large area should be surveyed. Some 

limitations are nevertheless to be considered (Rezaeian and 

Gruen, 2008), such as weather-related restrictions and concerns 

due to satellite revisit time, that restrict the data collection over 

a  given area to a particular time of the day. On the contrary, 

aerial imagery benefits from a more flexible data acquisition, 

both in terms of time and flight pattern. The on-board sensors 

have usually a much higher spatial, spectral and radiometric 

resolution compared with that of most satellite sensors. A 

review of the different airborne platforms and sensors for 

damage assessment can be found in (Kerle et al. 2008), whereas 

Joyce et al. (2009) summarize the space-borne available 

solutions for the same application field. 

Airborne as well as space-borne image data are usually 

collected from a conventional vertical perspective, that reduces 

occluded area and makes the data registration phase a rapid and 

automatic process. This traditional way of image acquisition is 

largely limited to collection of roof information, while façades 

are not visible or visible at high incidence angles. For that 

matter nadir imagery is useful if a complete collapse is to be 

identified yet useless in case of small damages, whose effects 

are typically detectable only along the façades. A promising 

solution to this issue is in the use of airborne oblique imagery, 

alone or in combination with nadir data. Façade information 

available in such imagery can be analysed in order to 

distinguish structural damages that affect façades, even if the 

roof is still intact or only partially destroyed. Few papers 
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investigate the use of oblique images to take a detailed 

inventory of damages on the building façades. In Altan et al. 

(2001) a number of indicators are adopted to identify different 

categories of damage, such as proximity to critical structural 

elements. This method requires the provision of a reference 

“framework” for each structure, with a clear disadvantage in 

terms of both rapid and safe damage assessment. Gerke and 

Kerle (2011) assess the adoption of airborne oblique multi-view 

Pictometry data by processing them within a two-step strategy. 

Images are first classified using a supervised approach and 22 

image-derived features, then classification results are combined 

from different viewing directions into a per-building damage 

score in accordance with the European Macroseismic Scale1. 

Finally, Unmanned Aerial Vehicle (UAV) platforms (Nex and 

Remondino, 2013; Colomina and Molina, 2014) are becoming a 

valuable source of data for post-disaster assessment and 

response is nowadays an active area of research. A review of 

recent applications of UAVs for image acquisition in disaster 

related situations can be found in Adams and Friedland (2011) 

with advantages that can support the adoption of UAVs, such as 

flexibility, ease of operation, and relatively low-cost of 

ownership and operation. 

Once the optical data are collected after an earthquake, several 

automatic methods can be adopted in order to process them and 

detect the damaged buildings. According to the available input 

data, two main categories of damage assessment approaches can 

be identified, i.e. multi-temporal and single epoch strategies.  

Multi-temporal methods are usually able to provide better 

results but they are dependent on the availability of reliable data 

that describe the pre-event building condition. They can be 

categorized in “Image to Image” and “Map to Image” 

approaches. The former are based on the application of change 

detection algorithms using both pre- and post-event images. 

Several papers have already presented promising results 

achieved using this approach (Huyck et al, 2005; Yamazaki et 

al., 2008; Tomowski et al., 2010). The damage assessment 

usually consists of four main phases: image registration, object 

extraction, attributes (features) collection and classification. 

Both pixel-based and object-oriented classification strategies 

can be efficiently applied in the latest step (Bitelli et al., 2004). 

Very different algorithms such as Fuzzy Inference Logic  

(Samadzadegan and Rastiveisi, 2008) or augmented Bayesian 

network (Rezaeian and Gruen, 2008) can be adopted. In the 

“Map to Image” approach, multi- or single epoch (post-event) 

data are used in combination with vector information (e.g. maps 

produced from GIS data before the event), in order to easily 

locate all buildings on the images. Then, the assessment of each 

building is performed by extracting spectral, texture and 

structural features (Guler and Turker, 2004). 

The detection of building damage by using only post-event data 

(i.e., single epoch) has recently been boosted by the availability 

of high-resolution imagery. The development of this approach 

was also forced by the lack of reliable pre-event information 

occurring at many occasions. Many properties characterizing 

partially-destroyed and/or collapsed buildings have been 

efficiently exploited for damage detection, such as edge, 

statistical textures, spatial relationship and spectral information. 

For instance, the use of single-epoch airborne imagery is 

discussed in (Guo et al., 2009, Sirmacek and Unsalan, 2009).  

 

1.2 Objectives 

Most of the aforementioned methods use supervised approaches 

to classify and assess damages. The downside of such 

                                                                 
1http://www.protezionecivile.gov.it/cms/attach/editor/rischio-
sismico/Scala_EMS-1998.pdf (last accessed: 16 October 2014) 

approaches is the requirement to collect training samples, that is 

a time-consuming task. This issue neglects their application in 

emergency response conditions or when unskilled users have to 

provide a damage map.  

In this paper we present a novel unsupervised approach for the 

automated detection of damaged buildings that attempts to 

address the shortcomings of existing approaches. The algorithm 

is evaluated on a set of high-resolution airborne images 

acquired over an urban landscape after a seismic event. Imagery 

is the most common type of information available immediately 

after an earthquake, hence it is the only input for the detection 

routines.  

The algorithm implementation and initial results will be 

described in the following sections. The paper is organized as 

follows: the methodology is first described, giving a brief 

introduction into the Markov Random Fields (MRF) and the 

general workflow of the algorithm. A description of the used  

features is given as well. The test areas and the achieved results 

are presented in Section 3, while the conclusions and the 

outlooks are discussed in Section 4. 

 

 

2. METHODOLOGY 

2.1 Classification methods 

To classify an image or a point cloud means to assign a class 

(the so-called label) to every 2D-pixel or 3D-point (the so-

called site) respectively. The problem is solved in a supervised 

or unsupervised manner.  

The supervised approach requires a data training phase in which 

the class samples, represented by feature vectors, undergo a 

statistical learning. The learning procedure generates a 

discriminative function that can map feature vectors to 

probabilities of belonging to a given class. The state-of-the-art 

classifiers are: random forests, support vector machines, 

AdaBoost or the classical maximum likelihood classifier 

(Schindler, 2012).  

In unsupervised classification there is no explicit teacher and no 

a priori knowledge on the class membership of the samples. 

Unfortunately the autonomy comes at the expense of more 

complexity and less reliability as the classifier does not know 

the class appearance explicitly. Among established methods that 

infer classes from unlabelled data we can cite: K-means, Fuzzy-

c-means, AUTOCLASS, DBSCAN, expectation maximization 

(Estivill-Castro, 2002).  

Less popular methods involve solving the classification problem 

with graphical modelling. These methods were proved in 

unsupervised (Lafarage and Mallet, 2012; Gerke and Xiao, 

2014) and supervised (Schindler, 2012) scenarios. Graphical 

models are represented by vertices     that denote random 

variables and edges    that denote their mutual relationships. 

The edges are either directed (causal model; Bayesian Network) 

and model conditional dependencies between vertices, or 

undirected (non-causal models; Markov Random Field) 

corresponding to the joint probabilities.  

Bayesian Network factorizes the joint probability distribution to 

a product of conditional distribution for each node,  

 ( )  ∏ (  |   )

 

 (1) 

where x are sites, and     are the parents of   ; the latter 

factorizes to a product of clique potentials,  

 ( )  
 

 
∏  (  )

   

 (2) 

where the clique   is defined by the site with its connected 

neighbourhood, the partition function   is a normalizing factor 
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and, notably, the potentials normally do not have any 

probabilistic interpretation (Bishop, 2006).  

On the other hand, Markov Random Fields (MRFs) with their 

non-causal property, allows to flexibly handle interactions 

among 2D-pixels, 3D-points or other sites. MRFs incorporate 

contextual constraints into the labelling problem by biasing 

neighbouring sites to have the same class hence leading to a 

smoother result. Under this assumption sites are no longer 

independent random variables but compound random fields. 

They depend on both data and classes of neighbouring sites (the 

clique) (Kumar and Hebert, 2006; Li, 2009; Schindler, 2012). 

The classification, effectively, tries to maximise the expression 

in Eq. (2), or alternatively minimize an energy function 

 ( )  ∑ (  
   

)  ∑  (     )

       

 (3) 

on a graph consisting of a set of nodes  , connected by a set of 

edges  . Denoted by   is the class labels set.  

The data penalty function  (  ) (unary potential) contains 

information about the probability of a given site   to belong to a 

particular class   . This class preference is evaluated for every 

site and every class.  

The  (     ) term, called the interaction or binary potential, 

encourages spatial coherence (i.e. smoothness) by penalizing 

sites whose neighbour class assignment dissents. Two 

established models to specify the interactions are the Ising 

model in case of binary classification and the Potts model for 

multiclass problems.  

Several efficient algorithms exist to infer the optimal 

configuration of classes with respect to the energy function 

defined as in Eq. (3). The global method of graph cut (Boykov 

and Kolmogorov, 2004) is definitely among the best 

optimization schemes.  

 

2.2 The developed workflow  

The implemented classification methodology adopts the MRF 

theory in conjunction with the Potts model to describe 

interactions between 3D-points. The unary potential of each 

regarded point is a product of factors i.e. the features calculated 

on the basis of the height information - provided by the 

photogrammetric DSM (in form of geo-referenced depth map) - 

and spectral information – provided by the generated true 

orthophoto (see section 2.3 and 2.4). Both products are derived 

from the original images. Every point in the DSM is 

characterized by a set of reliable features that help to 

discriminate buildings from other urban infrastructure and 

vegetation, as well as the intact buildings from the damaged 

ones. 

The classification strategy consists of two steps:  

1. The building regions are identified by considering the entire 

urban area with its context (urban classification - section 2.3). 

The goal is to identify four main classes, i.e. buildings, 

roads/bare soil, low vegetation and high vegetation. More 

complicated models with higher number of classes are 

possible, but this falls out of the general goal of the paper.  

2. The set of classes is extended to include intact building and 

damaged building classes, i.e. 5 classes in total (building 

classification – section 2.4). The result of the previous step is 

used to fix the energy (Eq. 3) of the remaining classes to low 

values, while the energy of the new classes reflects the state 

of the newly computed features. In this fashion, the 

boundaries of the roads as well as low and high vegetation 

classes are propagated from the urban classification phase, 

while the building class is reclassified split into the intact or 

damaged building class. The presence of ruins close to 

damaged buildings (but previously classified as ground) is 

therefore neglected in this implementation of the algorithm.  

The features of each step are merged together to form unary 

potential  (  ) term of Eq. (3). For the binary potential  (     ) 

a smoothness prior (Potts model) is imposed on the class labels.  

Inference is then performed with C++ implementation of the 

known  –expansion graph cuts2. 

 

2.3 Features for urban classification 

The three 2D- and 3D-point features adopted for the urban 

classification stage are: 

 

- Normalized Digital Surface Model (fnDSM). In order to 

provide a normalized DSM (nDSM = DSM – DTM), a digital 

terrain model is extracted from the photogrammetric DSM using 

the approach presented in (Nex and Remondino, 2012). This 

algorithm was developed for the processing of photogrammetric 

dense matching results and it is able to efficiently deal with the 

following issues: (i) ground height variations over a big region 

patch, (ii) presence of large buildings that impede the 

determination of correct ground height when too small DSM 

patches are considered and, (iii) presence of blunders or local 

noise that influence the determination of ground height values.  

The nDSM represents a valuable source of information about 

the height of each point. As suggested in (Gerke and Xiao, 

2014; Lafarge and Mallet, 2012), the fnDSM values are linearly 

projected onto a [0,1] range. The higher the point is (building 

and high vegetation), the larger the feature value. On the other 

hand, low values of fnDSM identify ground and low vegetation 

classes.  

 

- PNDVI (fPNDVI). In the absence of the NIR band, the PNDVI 

index is a valuable alternative to the NDVI. The attribute is 

computed as (Höhle, 2014): 

 
 bluered

bluered
PNDVI

II

II
f




  (4) 

High values of fPNDVI are expected for low/high vegetation 

classes. On the other hand, low values occur for 

building/ground classes.  

 

- Slope index (fslope). The slope feature is computed as the 

maximum slope occurring in eight symmetrical directions (2 

vertical, 2 horizontal, 4 diagonal) that leave each 3D-point. Low 

fslope values (i.e. low slope) describe low vegetation, ground and 

building classes. High vegetation is characterized by high fslope 

values. 

 

The aforementioned features (also referred to as factors) are 

merged together in the unary potentials of Eq. (3), according to 

the following expression:  

 (  )                      (5) 

 

2.4 Features for building classification 

Prior to calculating the features for building classification, the 

photogrammetric DSM is segmented to establish boundaries of 

individual geometric entities (e.g. building’s roof). Based on 

criterion such as local curvature, local normal and distance 

between points, a region growing segmentation is performed. 

The repetitive spectral feature and the local planarity feature are 

computed for a 1m-radius neighbourhood. The two filters 

                                                                 
2 http://vision.csd.uwo.ca/code/ (last accessed: 16 October 2014) 
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preserve the edges by intersecting the neighbourhood with the 

segmented geometries.  

The three 2D- and 3D-point features adopted to classify 

buildings (damaged / intact) are: 

 

- Repetitive spectral feature (fspectral). Intact roofs are usually 

characterized by regular and repetitive textures (i.e. shingle 

roofs, see Fig. 1a) or by low textured surfaces (i.e. metal roofs). 

Brick roofs show spectral gradients locally higher in one 

direction while damaged roofs and collapsed buildings have 

random textures with chaotic spectral gradients variations (Fig. 

1b). Low textured surfaces provide a low and ambiguous level 

of information caused by shadows, metal or painted surfaces. 

 

  
(a) (b) 

  
(c) (d) 

Figure 1. Texture (a) and corresponding spectral feature (c) for a not-

damaged roof; texture (b) and corresponding spectral feature (d) for a 

damaged roof. 

 

Starting from these observations, the developed feature provides 

a description about the random spectral distribution of pixels 

(see Figure 1c and 1d). The fspectral, computed on the true 

orthophoto, is granted exclusively to well texturized areas, 

otherwise the factor takes the value 1. Initially, for each pixel 

the radiometric gradients along the eight symmetrical directions 

(2 vertical, 2 horizontal, 4 diagonal) are computed. For every 

pixel there exists a vector of eight gradient attributes, which is 

equivalent to eight 2D-matrices in the entire image. Next, the 

algorithm traverses the eight matrices, element by element, and 

derives eight new measures calculated as the sum of the 

gradients within a 5x5 window. These new measures likewise 

compose an eight-element vector of values for every pixel. The 

final index  to indicate the spectral distribution is a ratio of the 

maximum and the minimum value within that vector (Gmax and 

Gmin, respectively) as shown in Eq. 6: 

where     is a threshold value that is function of the images and 

scenario characteristics. Areas characterized by repetitive 

patterns show big differences between different gradient 

directions: very high values in the principal gradient direction 

are coupled with lower values in the other directions. On the 

contrary, in the randomly textured areas the gradient has 

approximately the same value in every direction. 

Textures with Gmax lower than Th are considered to have too 

low texture to provide useful information, thus they are 

excluded. N is a parameter used to limit the ratio to a [0,1] range 

and here assumes the value of 0.2 (defined according to the 

performed tests). The texture feature to be added within the 

unary potentials of Eq. (3) is defined as:  

          {
                              
                                         

 (7) 

 

- Size of the detected region (fsize). Intact roofs usually belong 

to bigger regions with regular shapes. Collapsed roofs and walls 

are fragmented and with irregular shapes. Thus, the ratio 

between the perimeter (P) and the area (A) serves as suitable 

measure to identify the region of collapsed buildings by 

penalizing small regions with uncompact shapes. The values of 

fsize are given accordingly:  

      {
  

 

 
                          

 

 
                                       

 (8) 

where N is a parameter to normalize the ratio on the [0,1] range 

and it ranges between 10 and 20 according to the dataset. 

Values of  
 

 
   that exceeds 1 are stored as 1 in      . 

 

- Segment local planarity (fplanar). Roofs are characterized by 

planar surfaces, while collapsed buildings have irregular shapes, 

usually far from lying on a planar region. Local planarity is 

estimated for every 3D-point by collecting its neighbourhood 

and fitting a plane. The mean residual value Ri of all points 

adhering to the plane computation serves as the final feature. 

The residuals are linearly projected on [0,1] range according to 

the following equation:  

 

     {
  

     
           (     )

                                      

 (9) 

 

Values higher than 4·GSD are marked as outliers and set to 1. 

Regions with less than 10 points are regarded as wrongfully 

matched and excluded from further analysis. The final feature 

takes the following form: 

        {
                              
                                         

 (10) 

 

 

These three features are finally merged together in order to 

define the unary potentials of the energy function in Eq. (3):  

 (  )                          (11) 

 

 

3. EXPERIMENTS 

3.1 Area of study and dataset 

To evaluate the suggested approach for the automated detection 

of damaged buildings, the authors selected a dataset of aerial 

images taken after the Emilia-Romagna (Italy) earthquake. Two 

massive seismic events struck the area on May 20-29, 2012 and 

several tremors of different magnitude occurred in the following 

weeks. As a consequence, buildings, both historical and 

industrial, where seriously damaged along their roofs and 

façades.  

Days after the first earthquake a number of aerial and satellite 

images were acquired over the destroyed areas. For the purpose 

of this research, aerial images over the town of San Felice sul 

Panaro (Modena, Italy) were processed. The images were 

collected with a Vexcel Ultracam XP with a 7 cm GSD and 

80/40 overlap along-/across-track. 

 

     {

    
    

                 

                                   

 (6) 
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3.2 Experimental results 

The images were elaborated using MicMac, an open-source set 

of routines for bundle block adjustment and dense image 

matching (Pierrot-Deseilligny and Clery, 2011; Pierrot-

Deseilligny and Paparoditis, 2006). After the aerial 

triangulation, a 7 cm DSM and a true orthophoto at the same 

resolution were produced.  

As expected, the generated DSMs present some noisy areas, 

especially around the collapsed buildings where significant 

depth variations and occlusions prevail. The noise is 

accordingly evident in artefacts on the true orthophotos. 

Two subareas of the entire dataset were chosen for evaluating 

the operation of classification. The first area (hereinafter termed 

“Area 1”) challenges the approach in dealing with historical 

buildings made of bricks, while the second area (hereinafter 

called “Area 2”) is to examine the method’s performance in 

presence of modern and industrial buildings.  

For Area 1 (Fig. 2), the size of the investigated area is 2500 by 

2500 pixels. Figure 2b shows the extracted DSM while Figure 

2c shows the urban classification result with all man-made 

structures correctly distinguished from other parts of the 

landscape. The successive building classification stage 

recognized all the major collapses (see close-up views in Fig. 

2d) but is ineffective in spotting small changes when solely the 

building shingle is knocked while the roof frame (i.e. the roof 

structural elements) still stays in place. As these regions are 

small in size, the dense matching reconstruction smoothes the 

surface hence hiding the only discriminative clue of the damage.  

Some false positive are visible too, close to the building borders 

due to the noisy matching results. Such regions could be easily 

removed by setting a minimum dimension of a detectable 

damage. 

 
(a) (b) (c) 

   
(d)                               (e) 

   

Figure 2: True orthophoto (a) generated from the extracted DSM (b) of Area 1. Results of the urban classification (c) with four classes: low vegetation 

(light green), high vegetation (dark green), ground (gray), building (blue). Automatically detected damaged buildings and the created classification 
map (d) - with close-up views on the original imagery: damaged (red), intact (blue). Manual identification of damaged / intact buildings (e). 

 

 

The second area (Area 2) is an industrial zone and the test 

region consists of 2200 by 2000 pixel. The outcome of the 

urban classification is presented in Figure 3. All the buildings 

are recovered nonetheless problems occur in noisy parts of the 

buildings that are misclassified as vegetation (green).  

The results of the successive stage for damage detection 

(Fig.3d) are quite good although only the contours of the 

collapsed parts are usually spotted. The texture on buildings is 

less pronounced than in Area 1 and the repetitive spectral 

feature cannot significantly contribute to the discrimination of 

the collapsed areas. On the other hand, the information provided 

by the dense matching results allows the detection of the main 

collapsed areas on the roofs. False positive appear on flat roofs 

due to the presence of some bulky objects on its top that 

introduce the unflatness effect. 

4. CONCLUSIONS AND OUTLOOK 

The paper presented a methodology to automatically identify 

damages in buildings from high-resolution vertical aerial 

images. The methodology relies on sequential classification 

stages on height (DSM) and spectral (orthoimage) information 

derived from the available images. The methods has shown to 

provide satisfying results detecting big damages and completely 

collapsed building. The implemented features provide for 

evidences of non-planar and irregular surfaces as well as chaotic 

distribution of radiometric gradients. On the other hand, 

amendments are needed to cope with the detection of small 

damages on the roof surfaces.  

The achieved results have also shown some classification 

problems due to incorrect image matching results. This will be 
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(a) (b) (c) 

   
(d)                               (e) 

   

Figure 3: True orthophoto (a) generated from the extracted DSM (b) of Area 2. Results of the urban classification (c) with four classes: low vegetation 
(light green), high vegetation (dark green), ground (gray), building (blue). Automatically detected damaged buildings and the created classification 

map (d) - with close-up views on the original imagery: damaged (red), intact (blue). Manual identification of damaged / intact buildings (e). 

 

 

solved considering oblique views which will allow to mitigate 

the occlusions issues and to verify the damages from a different 

perspective. 

Finally, the proposed algorithm adopts a sequential process, that 

may cause an error propagation from the first step up to the final 

damage detection. In order to avoid this shortcoming, the future 

implementation will adopt a joint approach.  
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