Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-1/W5, 701-705, 2015
http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-1-W5/701/2015/
doi:10.5194/isprsarchives-XL-1-W5-701-2015
© Author(s) 2015. This work is distributed
under the Creative Commons Attribution 3.0 License.
 
11 Dec 2015
CLUSTERING OF MULTI-TEMPORAL FULLY POLARIMETRIC L-BAND SAR DATA FOR AGRICULTURAL LAND COVER MAPPING
H. Tamiminia1, S. Homayouni2, and A. Safari1 1School of Surveying and Geospatial Engineering, Dept. of Remote Sensing, College of Engineering, University of Tehran, Iran
2Dept. of Geography, Environmental Studies and Geomatics, University of Ottawa, Ottawa, Canada
Keywords: Kernel-Based Fuzzy C-means, Crop Classification, Polarimetric SAR Images, Multi-Temporal Data, Target Decompositions Abstract. Recently, the unique capabilities of Polarimetric Synthetic Aperture Radar (PolSAR) sensors make them an important and efficient tool for natural resources and environmental applications, such as land cover and crop classification. The aim of this paper is to classify multi-temporal full polarimetric SAR data using kernel-based fuzzy C-means clustering method, over an agricultural region. This method starts with transforming input data into the higher dimensional space using kernel functions and then clustering them in the feature space. Feature space, due to its inherent properties, has the ability to take in account the nonlinear and complex nature of polarimetric data. Several SAR polarimetric features extracted using target decomposition algorithms. Features from Cloude-Pottier, Freeman-Durden and Yamaguchi algorithms used as inputs for the clustering. This method was applied to multi-temporal UAVSAR L-band images acquired over an agricultural area near Winnipeg, Canada, during June and July in 2012. The results demonstrate the efficiency of this approach with respect to the classical methods. In addition, using multi-temporal data in the clustering process helped to investigate the phenological cycle of plants and significantly improved the performance of agricultural land cover mapping.
Conference paper (PDF, 932 KB)


Citation: Tamiminia, H., Homayouni, S., and Safari, A.: CLUSTERING OF MULTI-TEMPORAL FULLY POLARIMETRIC L-BAND SAR DATA FOR AGRICULTURAL LAND COVER MAPPING, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-1/W5, 701-705, doi:10.5194/isprsarchives-XL-1-W5-701-2015, 2015.

BibTeX EndNote Reference Manager XML