Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-1/W1, 333-338, 2013
http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-1-W1/333/2013/
doi:10.5194/isprsarchives-XL-1-W1-333-2013
© Author(s) 2013. This work is distributed
under the Creative Commons Attribution 3.0 License.
 
02 May 2013
AUTOMATIC DETECTION AND RECOGNITION OF MAN-MADE OBJECTS IN HIGH RESOLUTION REMOTE SENSING IMAGES USING HIERARCHICAL SEMANTIC GRAPH MODEL
X. Sun, A. Thiele, S. Hinz, and K. Fu Institute of Photogrammetry and Remote Sensing (IPF), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
Institute of Electronic, Chinese Academy of Sciences, Beijing, China
Key Laboratory of Spatial Information Processing and Application System Technology, Chinese Academy of Sciences, Beijing, China
Keywords: Objects detection, Objects recognition, High resolution remote sensing images, Semantic graph model Abstract. In this paper, we propose a hierarchical semantic graph model to detect and recognize man-made objects in high resolution remote sensing images automatically. Following the idea of part-based methods, our model builds a hierarchical possibility framework to explore both the appearance information and semantic relationships between objects and background. This multi-levels structure is promising to enable a more comprehensive understanding of natural scenes. After training local classifiers to calculate parts properties, we use belief propagation to transmit messages quantitatively, which could enhance the utilization of spatial constrains existed in images. Besides, discriminative learning and generative learning are combined interleavely in the inference procedure, to improve the training error and recognition efficiency. The experimental results demonstrate that this method is able to detect manmade objects in complicated surroundings with satisfactory precision and robustness.
Conference paper (PDF, 713 KB)


Citation: Sun, X., Thiele, A., Hinz, S., and Fu, K.: AUTOMATIC DETECTION AND RECOGNITION OF MAN-MADE OBJECTS IN HIGH RESOLUTION REMOTE SENSING IMAGES USING HIERARCHICAL SEMANTIC GRAPH MODEL, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-1/W1, 333-338, doi:10.5194/isprsarchives-XL-1-W1-333-2013, 2013.

BibTeX EndNote Reference Manager XML